Empirical Software Engineering manuscript No.
(will be inserted by the editor)

18 Million Links in Commit Messages: Purpose,
Evolution, and Decay

Tao Xiao B4 - Sebastian Baltes - Hideaki
Hata . Christoph Treude - Raula
Gaikovina Kula - Takashi Ishio - Kenichi
Matsumoto

Author pre-print copy. The final publication is available at Springer via:
https://link.springer.com/article/10.1007/s10664-023-10325-8

Abstract Commit messages contain diverse and valuable types of knowledge
in all aspects of software maintenance and evolution. Links are an example of
such knowledge. Previous work on “9.6 million links in source code comments”
showed that links are prone to decay, become outdated, and lack bidirectional
traceability. We conducted a large-scale study of 18,201,165 links from commits
in 23,110 GitHub repositories to investigate whether they suffer the same fate.
Results show that referencing external resources is prevalent and that the most
frequent domains other than github.com are the external domains of Stack
Overflow and Google Code. Similarly, links serve as source code context to
commit messages, with inaccessible links being frequent. Although repeatedly
referencing links is rare (4%), 14% of links that are prone to evolve become
unavailable over time; e.g., tutorials or articles and software homepages become
unavailable over time. Furthermore, we find that 70% of the distinct links
suffer from decay; the domains that occur the most frequently are related to

>4 Corresponding author - Tao Xiao
Nara Institute of Science and Technology, Japan
E-mail: tao.xiao.ts2@is.naist.jp

Sebastian Baltes
University of Adelaide, Australia
E-mail: sebastian.baltes@adelaide.edu.au

Hideaki Hata
Shinshu University, Japan
E-mail: hata@shinshu-u.ac.jp

Christoph Treude
University of Melbourne, Australia
E-mail: christoph.treude@unimelb.edu.au

Raula Gaikovina Kula, Takashi Ishio, Kenichi Matsumoto
Nara Institute of Science and Technology, Japan
E-mail: {raula-k,ishio,matumoto}@is.naist.jp

2 Tao Xiao B< et al.

Subversion repositories. We summarize that links in commits share the same
fate as links in code, opening up avenues for future work.

Keywords Commit Messages - Software Documentation - Link Sharing -
Link Decay

1 Introduction

Developers use commit messages as a means to summarize introduced code
changes in natural language (Mockus and Votta, 2000; Buse and Weimer,
2010). These descriptions can be used to validate changes, locate and triage
bug reports, and trace changes to address software maintenance tasks (Girba
et al., 2005; Hassan, 2008; D’ Ambros et al., 2010). It is also known that commit
messages usually contain diverse types of useful knowledge in terms of how
they facilitate the understanding of code changes, e.g., issue, feature, and
rationale (Mockus and Votta, 2000; Fu et al., 2015; Sarwar et al., 2020).

Inspired by the Internet, useful information or knowledge has been repre-
sented by links. However, the growth of links has brought on more challenges
of link decay (Kehoe et al., 1998), digital plagiarism (Barrie and Presti, 2000),
and fragile historical web content (Murphy et al., 2007). Recently, Hata et al.
(2019) conducted a study to understand the purposes, evolution, and decay of
links in source code comments. They observed decay, insufficient versioning,
and lack of bidirectional traceability. Link decay is also a common problem in
other software artifacts, e.g., Stack Overflow posts (Liu et al., 2021). Liu et al.
(2022b) also observed that external links are repeatedly referenced in Stack
Overflow posts, and they found that repeated external links increase the main-
tenance effort. As an important communication channel, commit messages be-
come critical for communicating effectively. Among the knowledge embedded
in commit messages, links are special containers that provide additional knowl-
edge for developers in commit messages. Commit messages may play a similar
role as source code comments, which communicate information indirectly be-
tween code authors and reviewers. Thus, these issues in source code comments
may also apply to commit messages. Figure 1 shows the motivating example
of how the link decay in the commit messages causes knowledge loss in the
code review process. Such knowledge loss will not only increase review time
but also make confusion for future developers.

This paper is an extension of Hata et al. (2019), where we formulate six
research questions to establish the understanding of the role of links in commit
messages. We collect 18,201,165 links from commits in 23,110 GitHub repos-
itories. From our quantitative analyses, we find that links are occurring in
commit messages, accounting for at least 83% of GitHub repositories in our
study and the internal domain github.com is the most frequently occurring
domain in commit messages, followed by stackoverflow.com. Then, we identify
the kinds of link targets that are referenced and their purposes served in com-
mit messages through qualitative studies of a stratified sample of 1,145 links.
We observe that (i) inaccessible links and patch links are the most frequently

18 Million Links in Commit Messages: Purpose, Evolution, and Decay 3

Document the User Agent Service APls. #834
wants to merge 25 commits into from L@

L) Conversation 43 -0- Commits 25 El Checks o Files changed 34

Changes from 1 commit v File filter v Conversationsv Jumpto ~ @ -

Pre: Ignore global leak caused by node-escapist.
See https://github.com/vpukhanov/node-escapist/issues/1.

committed on Sep 21, 2016

v ¢ lm test/mocha.opts (5J

X @@ -2,6 +2,7 @@
—-reporter spec
—--recursive
—-check-1leaks

+

——globals i

2
3
4
5
on Sep 24, 2016 Member

Can you explain this option?

on Sep 27, 2016 Member = Author

It's in the commit message -- this is how you ignore a "namespace leak" failing list from the "node-escapist"
module. | see that module has been removed from Github, so the link in the commit message is broken. | think
we'll stop using this when we move the UA service to CLJS.

5 6 ——full-trace
6 7 —-timeout 5000
7 8 ——compilers js:babel-core/register

Fig. 1: Motivating example of link decay in the commit message.

occurring link target types in commit messages; and (ii) links are often used
to serve as source code context or to keep files in sync between versions. To
investigate the phenomenon of links (e.g., repeated link reference, link evolu-
tion, and link decay), we conducted a mixed-methods study. Our results show
that (i) the behavior of repeatedly referenced links rarely happens in commit
messages; (i) 14% of the links are prone to evolve to become unavailable over
time, e.g., tutorial or article and software homepage are temporarily available
software artifacts; and (iii) link decay is a common issue in commit messages.
This extension makes the following main contributions:

— large-scale and comprehensive studies of around 18 million links to establish
the prevalence, link decay, and case study of Stack Overflow link target
evolution in commit messages,

4 Tao Xiao B< et al.

— a mixed-methods study to identify types of link targets and purposes that
links served, links evolution, and reasons why links are repeatedly refer-
enced in commit messages,

— a comparison study of the role of links between source code comments and
commit messages (i.e., RQs 1, 2, 3, 6, and a case study of Stack Overflow
in RQ5), and

— a full replication package of our study, including the scripts and data set.!

The rest of the paper is organized as follows. Section 2 structures our six
research questions and their motivations. Section 3 details our data collec-
tion process. Section 4 describes our methods in qualitative and quantitative
analyses. Section 5 presents our research findings by answering the six afore-
mentioned research questions. Section 6 discusses the comparison of the role
of links between source code comments and commit messages and recommen-
dations. Section 7 acknowledges threats to the validity of our study. Section 8
situates our work in relation to the literature on commit messages, knowledge
sharing, and link sharing. Section 9 draws conclusions and highlights oppor-
tunities for future work.

2 Research Questions

In this section, we present our six research questions with the motivation to
gain insight on how links are used in commit messages.

(RQ1) How prevalent are links in commit messages?

To gain an initial intuition about links and understand the usage of links
in commit messages, we set out to quantitatively explore the distribution,
diversity, and spread of these links across different types of software projects.

(RQ2) What kinds of link targets are referenced in commit messages?

(RQ3) What purpose do links in commit messages serve?

RQ2 and RQ3 involve a more qualitative approach to analyze what role
links play in what developers use in commit descriptions. Answering these RQs
will help characterize why and how developers make references in a commit
message.

(RQ4) To what extent do commit message links get repeatedly referenced?

(RQ5) How prone are link targets to evolve over time?

(RQ6) How frequent are inaccessible links in commit messages?

RQ4, RQ5, and RQ6 investigate the phenomenon of links from the evolu-
tionary and maintenance point of view. We would like to understand whether
developers are repeating links, how these links evolve after introducing them,
and how many of the links are affected by link decay.

1 https://doi.org/10.5281/zenodo . 7536500

https://doi.org/10.5281/zenodo.7536500

18 Million Links in Commit Messages: Purpose, Evolution, and Decay 5

3 Data Collection

To answer the research questions mentioned above, we focus on the same
stratified sample of repositories as the previous study used in our earlier study
of links in source code files (Hata et al., 2019). They collected active non-forked
repositories for the seven languages from the GHTorrent data set? (Gousios,
2013) using the following criteria: (i) having more than 500 commits in their
entire history, and (ii) having at least 100 commits in the most active two years
to remove long-term less active repositories and short-term projects that have
not been maintained for long. The repository list is part of our replication
package.

3.1 Commit Message Collection

To extract all links from the commit messages in these repositories, we used
a bash script to retrieve all commit messages from the default branch of these
repositories, exporting them to CSV files along with the commit metadata.?
Since some repositories were not available because they had been deleted or
made private, we obtained 27,263 (93%) repositories from the given repository
list, created in 2018 (see Table 1 for details on the different strata). We then
imported those CSV files into Google BigQuery tables, one per programming
language.

3.2 Link Identification

Using the following regular expression in SQL queries, we extracted HTTP(S)
URLs, which is the most common way of hosting or sharing resources, from
collected commit messages stored in Google BigQuery tables:

(https?:\/\/(7:www\.)? [-a-zA-Z0-9@:%. \+~#=]{1,256}\. [a-zA-Z0-9()] {1,6}\b(?: [-a-
zA-Z0-9() @: %\+. " #7&\/\/=1%))

We identified a total of 18,201,190 links from commit messages, as seen in
Table 1. Since we will conduct a quantitative study on aspects of link domains
(RQ1), we exclude 25 false-positive links in this analysis, whose domain is
empty (e.g., “The learn more link should go to http://...answer=185277.").
These false-positive links are malformed and served as an example of links in
commit messages. As a result, we obtained 18,201,165 links that are used in
this study. The bash and SQL scripts, commit messages, and resulting CSV
files are available as part of our replication package.

2 MySQL database dump 2019-02-01 from http://ghtorrent.org/downloads.html.
3 https://github.com/sbaltes/git-log-extractor

http://ghtorrent.org/downloads.html
https://github.com/sbaltes/git-log-extractor

6 Tao Xiao B< et al.

Table 1: Collected repositories and links.

repositories # commits # links
candidate obtained (%) All w/ links (%)

C 2771 2,607 (94%) 122.5M 7,256,770 (5.9%) 8,067,201
C++ 3,563 3,391 (95%) 21.2M 4,188,042 (19.7%) 4,779,742
Java 4,995 4,701 (94%) 30.4M 1,758,495 (5.8%) 1,891,739
JavaScript 7,130 6,542 (92%) 13.8M 634,715 (4.6%) 778,667
Python 5263 5007 (95%) 15.9M 766,324 (4.8%) 859,396
PHP 3279 2,041 (90%) 11.0M 1,335,934 (12.1%) 1,503,529
Ruby 2,233 2,074 (93%) 5.9M 214,647 (3.6%) 320,916
sum 20,234 27,263 (93%) 220.8M 16,154,927 (7.3%) 18,201,190

4 Method

In this section, we describe the mixed-methods procedure that includes quan-
titative analysis (Section 4.1 for RQs 1, 5, and 6) and qualitative analysis
(Section 4.2 for RQs 2, 3, and 4).

4.1 Quantitative Analysis

To get an intuition of links and their usages in commit messages (RQ1),
and investigate the phenomenon of the evolution of link targets (RQ5) and
link decay (RQ6), we conduct quantitative analyses of 18,201,165 links and a
statistically representative and stratified sample.

Link Prevalence (RQ1) For RQ1, we conducted three quantitative studies on
aspects of link existence, domain popularity, and popular domains in our data
set. For link existence, we calculate the ratio of repositories with at least one
link among seven programming languages. For domain popularity, we calculate
the distribution of the number of different domains per repository. Median
values are used to measure popularity. For popular domains, we calculate the
top ten frequent repositories by counting only once in each repository.

Link Target Evolution (RQ5) To address RQ5, we conducted a quantitative
study to investigate the evolution of link targets. We use the Wayback Machine
JSON API*® to obtain the closest snapshots of links from our 1,145 samples
that are used in qualitative analysis from RQs2—4 in the next two years when
we retrieved our data set (e.g., March 16, 2020, March 16, 2021, and March
16, 2022). This API will return a JSON object if the given link is archived
and currently accessible in the Wayback Machine, and it will return an empty
JSON object if the given link is not archived or currently not accessible. Then,
we compare these availability statuses to the coding results from RQ2.

4 https://archive.org/help/wayback_api.php
5 https://github.com/sbaltes/wayback-machine-retriever

https://archive.org/help/wayback_api.php
https://github.com/sbaltes/wayback-machine-retriever

18 Million Links in Commit Messages: Purpose, Evolution, and Decay 7

10000000
commonly

‘ linked
1000000 /

/
/
/
/ sometimes rarely

finked linked

domains

Fig. 2: Distribution of links per domain.

Link Decay (RQ6) For RQ6, we conducted a quantitative study on aspects
of link decay in our data set. Out of the obtained 18,201,165 links, there
are 6,667,207 distinct links. To investigate the number of inaccessible links in
commit messages, we accessed all web content of the 6,667,207 unique links
by using Perl modules LWP: :UserAgent and LWP: :RobotUA as in the previous
study (Hata et al., 2019). Then, we identified their HTTP status codes and
considered 2xx codes accessible links. Unlike in the previous study, we excluded
error status codes (i.e., 4xx and 5xx) because error details are not the focus of
this study. Finally, redirection status codes (i.e., 3xx) occurred infrequently in
the previous study—only 0.7% of the analyzed links were redirected. For this
study, we consider such redirect links not accessible in terms of the original
resource and thus excluded them. Additional retrieval and verification of their
redirection targets would be required, with a marginal effect on the results.
They could, however, be further analyzed in future work to better understand
the evolution of software documentation.

4.2 Qualitative Analysis

To understand what kinds of link targets are referenced in commit messages
(RQ2), understand what purpose do links in commit messages serve (RQ3),
and investigate the phenomenon of repeated links in commit messages (RQ4),
we conduct qualitative analyses of a statistically representative and stratified
sample.

Link Target (RQ2) In RQ2, we conducted a qualitative study of a statistically
representative and stratified sample of all links in our data set, to understand

8 Tao Xiao B< et al.

Table 2: Construction of the stratified sample.

strata # domains # links # links in sample
common 2,270 17,870,470 384
sometimes 22,897 309,120 384
rare 21,575 21,575 377
sum 46,742 18,201,165 1,145

what kind of link targets are referenced in commit messages. Similar to the
previous study of Hata et al. (2019), we divided the data into three strata: 1)
links to commonly linked domains; 2) links to domains sometimes linked; and
3) links to rarely linked domains. To decide on thresholds for distinguishing
domains into three strata, we conducted a visual analysis of the distribution
of links per domain in our data set. Figure 2 presents this distribution using
a log scale with a cutoff frequency between ‘common’ and ‘sometimes’ of 194.
We consider domains that account for exactly one link in our data set to be
rarely linked, similar to the previous study of Hata et al. (2019).

Table 2 shows the number of domains and the number of links in each
stratum. We randomly sampled a statistically representative number of links
with a confidence level of 95% and a confidence interval of 5 from each stratum.
In the results, we obtained 384 (from commonly linked domains), 384 (from
domains sometimes linked), and 377 links (from rarely linked domains).

Hata et al. (2019) introduced the coding guide for link targets in comments
of source code files. In this paper, we will reuse the coding guide to classify link
targets. However, we found that their coding guide did not cover all link targets
in commit messages. Hence, the following three additional codes emerged from
our manual analysis in the first iteration:

— repository: online storage location of software packages.
— pull request: request to merge changes back into the main branch.
— patch: set of changes to a repository.

The first, third, and fourth authors of this paper independently coded 30
links from the sample and then calculated the Fleiss’s kappa agreement (Fleiss,
1971) of this iteration between all three raters. The kappa agreement of the
link target was 0.72 or “Substantial agreement” (Viera and Garrett, 2005).
Based on this encouraging result, the remaining data was then coded by the
first author of this paper. If the first author was unable to identify the code of
the links (i.e., 13 cases), we engage in discussions to determine the appropriate
type. This collaborative approach ensured that all links were accurately and
consistently coded.

Link Purpose (RQ3) In RQ3, we use the same sample and process as RQ2. We
conducted a qualitative analysis of our statistically representative sample, fo-
cusing on the purpose of the link. We also found that their coding guide (Hata
et al., 2019) did not cover all link purposes in commit messages. Hence, the

18 Million Links in Commit Messages: Purpose, Evolution, and Decay 9

following three additional codes emerged from our manual analysis in the first
iteration:

— version control sync: the link explicitly indicates that it is used for
keeping files in sync between versions (e.g., merge branch and git-svn-id).

— related issue: the link relates to the issue report.

— unknown (404): exception which is the original GitHub commit link can-
not be accessed. Note that creating this code was likely not the purpose of
adding the link, but since we cannot reliably access its content anymore,
we code all such instances as unknown (404).

After coding 30 links from the sample, the kappa agreement reached 0.69,
which is also “Substantial agreement” (Viera and Garrett, 2005). The remain-
ing data was coded by the first author of this paper.

Repeated Links (RQ4) The corresponding research question of the previous
study (Hata et al., 2019) is “How do links in source code comments evolve?”
Unlike links in source code comments, it is unlikely that links in commit mes-
sages are edited in practice. Therefore, this research question, “To what extent
do commit message links get repeatedly referenced?”, investigates whether the
same links appear in commit messages when the same files are modified.

We use the same sample from RQ2 and RQ3. For each link, we extract a
commit history of the files modified by the commit, including the link. Then,
we count the frequency of the link in the commit history. If the same link
appears more than once, we consider the link as repeated. We manually read
the commit messages to analyze relationships among the commits. We classify
them into groups based on potential reasons in a bottom-up manner.

— same data source: includes links that appear in commits importing up-
dates from external repositories. In particular, we classify a link into this
group if:

— the commit message is generated by a tool such as Dependabot and
Greenkeeper, or

— the link points to a language translation platform such as trans-
latewiki.net and Weblate.

In those cases, we consider that the links point to external data sources of

the project.

— same purpose: includes the link pointing to development issues, including
feature requests and bug reports. Links repeatedly appear in the commit
history, probably because the developers needed a number of changes to
resolve the issues. We classify a link into this group if:

— the link target is an issue on an issue tracking system, or
— commits including the link that has exactly the same message.

— same reference: includes the link that refers to either specification doc-
uments or API documents outside of the projects. We classify a link into
this group based on the link target analyzed in RQ2.

— other: includes the link that could not be categorized due to limited in-
formation.

10 Tao Xiao X et al.

Table 3: Links to domain github.com by language. Same owner: for link pattern
github.com/([~/1+), the group matches the owner of the repository the commit
belongs to; same repo: in addition, the second group matches the owner name
and the repository name: github.com/([~/1+)/([/1+).

language all same owner same repo

C 178,250 42,310 (23.7%) 36,225 (20.3%)
CH++ 107,308 70,491 (65.7%) 54,544 (50.8%)
Java 194,086 141,324 (72.8%) 84,502 (43.5%)
JavaScript 318,043 170,478 (53.6%) 110,255 (34.7%)
PHP 116,368 61,632 (53.0%) 45,469 (39.1%)
Python 154,938 84,491 (54.5%) 52,805 (34.1%)
Ruby 128,686 28,700 (22.3%) 20,030 (15.6%)
sum 1,197,679 599,426 (50.0%) 403,830 (33.7%)

While the codes and rules emerged from manual analysis, the sample is ana-
lyzed by the above rules.

5 Results

In this section, we present the results of each research question.

5.1 Prevalence of Links (RQ1)

To explore the prevalence of links referenced in commit messages, we conducted
quantitative analyses of our collected data set in terms of the existence of links,
diversity of domains, and popularity of domains.

Link existence. Figure 3(a) presents the percentages of studied reposito-
ries. Many repositories have at least one link in their commit messages, e.g.,
83% for Ruby repositories. We observe that the percentages slightly vary by
language, accounting for five percentage points. Additionally, for repositories
written in Java, C++, and C, more than 85% of the repositories contain links
to provide additional knowledge.

Domain diversity. We obtained 46,742 distinct domains or Internet host-
names, out of the obtained 18,201,165 links. Figure 3(b) shows the distribution
of the number of different distinct domains per repository, with median val-
ues. We find that the median of different domains of repositories written in C
is relatively greater than other studied languages, accounting for at least five
different domains.

Popular domains. Figure 3(c¢) depicts the heatmap of repositories in each
language shared by the top ten most referenced domains. To rank the top ten
domains, we only counted once even if the domain has appeared several times,
and used the number of repositories instead of the number of links.

The github.com domain is the most frequently occurring domain in our
studied data set, accounting for 20,954 repositories across seven languages

18 Million Links in Commit Messages: Purpose, Evolution, and Decay 11

= Link
= Nolink

Python

Javascript

T
.
b
b
H
H
H
H
H
H
H
H
H
H
:

&

Java

CH+ 8
: ; 2 |] g Le s]
— [| =2 [| []
0 20 40 60 80 100 < C++ java javascript php python ruby
(a) Ratio of repositories with links. (b) Distribution of the number of different do-
mains per repository.

(1) github.com

4500

(2) stackoverflow.com|
4000

(3) code.google.com
3500

(4) en.wikipedia.org
3000
(5) gist.github.com
2500

damain

{6) groups.google.com
2000

{7) sourceforge.net|

1500
(8) travis-ci.org|

1000
(9) gee.gnu.org

500

{10) www.w3.org
Java JavaScript PHP
PL

Python Ruby

(c) Heatmap of repository languages shared by the top ten most refer-
enced domains.

Fig. 3: Analysis of links by (a) languages, (b) domain diversity, and (c) top
domains.

referencing content on github.com. As one of the most popular social coding
platforms, Dabbish et al. (2012) found that transparency in GitHub allowed
work to evolve with collaboration. Not surprisingly, the github.com domain
is used frequently in commit messages. Hence, we decided to look at those
links in detail. Table 3 shows how many links in the particular programming
languages pointed to resources hosted under the same owner as the one owning
the repository the commit belongs to. The table further shows how many links
pointed to resources in the same repository (matching the owner name and
the repository name). Overall, half of the github.com links were internal to
the repository owner, and about a third of the links were internal to the

12 Tao Xiao X et al.

Table 4: Links to domain github.com pointing to the same repository
(n=403,830), ten most frequent path segments following the repository name;
none: link pointed to the repository root path.

path segment link count

none 187,400 (46.4%)
issues 107,479 (26.6%)
pull 82,061 (20.3%)
commit 14,667 (3.6%)
blob 8,389 (2.1%)
compare 1,637 (0.4%)
wiki 983 (0.2%)
tree 341 (0.08%)
releases 197 (0.05%)
projects 68 (0.02%)

repository, i.e., pointed to resources within the same repository. Focusing on
the latter, we see that almost half of those links point to the repository root
path, 26.6% point to issues, and 20.3% point to pull requests (see Table 4).
This indicates that almost half of the repository-internal links are used in cases
where GitHub’s hash notation for linking issues or pull requests (#issue_id or
#pull_request_id) could have been used.

Another commonly occurring domain is the stackoverflow.com domain, ac-
counting for 4,136 repositories across seven languages referencing content on
stackoverflow.com. This finding confirms the results of Vasilescu et al. (2013),
they found Stack Overflow activities accelerate GitHub committing. Develop-
ers share external knowledge through links from Stack Overflow to GitHub
to encourage committing since active developers in GitHub are also active
questioners (Xiong et al., 2017).

The distribution of the top ten domains differs by language. But in sum-
mary, most domains are frequently referenced in C repositories, e.g., en.wikipe
dia.org, sourceforge.net, and gcc.gnu.org. The github.com domain is commonly
referenced in 4,987 JavaScript repositories. Moreover, Java repositories contain
more links with the code.google.com domain and www.w3.org domain. Repos-
itories written in C referenced many links to the domains of en.wikipedia.org,
gist.github.com, groups.google.com, sourceforge.net, and gcc.gnu.org.

RQ1 Summary: We observe that links in commit messages are preva-
lent. Most of the repositories have at least one link in their commit
messages, e.g., 83% for Ruby. The top three most frequently refer-
enced domains per repository are github.com, stackoverflow.com, and
code.google.com.

18 Million Links in Commit Messages: Purpose, Evolution, and Decay 13

Table 5: Frequency of link target types in our sample. The bold target cate-
gories are complemented by this paper from the previous work (Hata et al.,
2019). To prevent any confusion regarding the inclusion of “404” as a link
target, we have decided to rename “404” (Hata et al., 2019) to “unknown
(404)”.

Commit messages Source code comments (Hata et al., 2019)

common sometimes rare common sometimes rare
unknown (404) 161 (42%) 132 (34%) 162 (43%) 27 (%) 122 (32%) 138 (37%)
patch 110 (29%) 9 (2%) 2 (1%) - - - - - -
bug report 61 (16%) 23 (6%) 2 (1%) 9 (2%) 10 (3%) 3 (1%)
other 20 (5%) 49 (13%) 51 (14%) 5 (1%) 23 (6%) 45 (12%)
repository 14 (4%) 2 (1%) 1 (0%) - - - - - -
software homepage 6 (2%) 26 (%) 23 (6%) 55 (14%) 65 (17%) 28 (7%)
organization homepage 4 (1%) 13 (3%) 15 (4%) 16 (4%) 41 (11%) 24 (6%)
tutorial or article 3 (1%) 34 (9%) 42 (11%) 16 (4%) 21 (5%) 31 (8%)
pull request 3 (1%) 1 (0%) 0 (0%) - - - - - -
forum thread 2 (1%) 28 (7%) 4 (1%) 0 (0%) 5 (1%) 6 (2%)
API documentation 0 (0%) 22 (6%) 12 (3%) 14 (4%) 20 (5%) 10 (3%)
blog post 0 (0%) 14 (4%) 23 (6%) 1 (0%) 10 (3%) 22 (6%)
specification 0 (0%) 12 (3%) 4 (1%) 21 (5%) 33 (9%) 32 (8%)
application 0 (0%) 7 (2%) 15 (4%) 0 (0%) 11 (3%) 13 (3%)
code 0 (0%) 5 (1%) 7 (2%) 6 (2%) 2 (1%) 5 (1%)
research paper 0 (0%) 4 (1%) 4 (1%) 0 (0%) 9 (2%) 13 (3%)
personal homepage 0 (0%) 2 (1%) 6 (2%) 4 (1%) 8 (2%) 4 (1%)
Q&A thread 0 (0%) 1 (0%) 1 (0%) 0 (0%) 0 (0%) 1 (0%)
license 0 (0%) 0 (0%) 2 (1%) | 208 (54%) 1 (1%) 1 (0%)
book content 0 (0%) 0 (0%) 1 (0%) 0 (0%) 0 (0%) 2 (1%)
GitHub profile 0 (0%) 0 (0%) 0 (0%) 1 (0%) 0 (0%) 0 (0%)
Stack Overflow 0 (0%) 0 (0%) 0 (0%) 1 (0%) 0 (0%) 0 (0%)
sum 384(100%) 384(100%) 377(100%) | 384(100%) 384(100%) 378(100%)

5.2 Link Targets (RQ2)

Table 5 shows the result of our qualitative analysis. For all types of domains,
in many of the cases we could not determine the link target type because of a
missing link, accounting for 42%, 34%, and 43%, respectively. For commonly-
linked domains, patch is the second most frequent type of link target, account-
ing for 29%. For domains that are sometimes and rarely linked, tutorial or
article is the third most common type of link target. Moreover, this table
reveals that the remaining link targets are distributed similarly (i.e., not more
than 7%). The prevalence of the code other in the results for links to all linked
domains is an indicator of the diversity of links present in commit messages.

RQ2 Summary: Inaccessible links are the most prevalent target type
in commit messages, whereas various other types, such as patch, bug
report, and tutorial or article, are also common.

5.3 Link Purpose (RQ3)

Table 6 shows the result of our qualitative analysis. For commonly-linked do-
mains, version control sync is the most frequent purpose, accounting for

14 Tao Xiao X et al.

Table 6: Frequency of link purposes in our sample. The bold target categories
are complemented by this paper from the previous work (Hata et al., 2019).

Commit messages Source code comments (Hata et al., 2019)
common sometimes rare common sometimes rare
version control sync 169 (44%) 18 (5%) 1 (0%) - - - - - -
metadata 85 (22%) 11 (3%) 12 (3%) | 288 (75%) 131 | (34%) 43 (11%)
related issue 70 (18%) 54 (14%) 12 (3%) - - - - - -
source code context 28 (T%) 225 (59%) 267 (71%) 18 (5%) 60 | (16%) 80 (21%)
source/attribution 16 (4%) 44 (11%) 62 (16%) 27 (%) 62 | (16%) 75 (20%)
unknown (404) 11 (3%) 2 (1%) 1 (0%) - - - - - -
see-also 3 (%) 14 (4%) 12 (3%) | 28 (%) 59 | (15%) 51 (13%)
commented-out source code 1 (0%) 11 (3%) 9 (2%) 1 (0%) 17 (4%) 70 (19%)
link-only 1 (0%) 2 (1%) 1 (0%) 6 (2%) 24 (6%) 40 (11%)
self-admitted technical debt 0 (0%) 2 (1%) 0 (0%) 11 (3%) 16 (4%) 13 (3%)
@see 0 (0%) 1 (0%) 0 (0%) 5 (%) 15| (4%) 6 (2%)
sum 384(100%) 384(100%) 377(100%) | 384(100%) 384 |(100%) 378(100%)

44% of links, followed by metadata (22%). For domains that are sometimes and
rarely linked, source code context is the most common purpose (59-71%),
followed by source/attribution (11-16%) and related issue (3-14%), re-
spectively. This indicates that most links are used for keeping files in sync or
adding additional information to fill the context in commit messages. We also
observe a few false-positive cases (0-3%), which indicate the original GitHub
commit link cannot be accessed.

Patterns in the relationship between link targets and purposes.
Based on the qualitative analysis conducted to answer RQ2 and RQ3 about the
targets and purposes of links in source code comments, we can now investigate
the relationships between the different types of link targets and the different
purposes which emerged from our qualitative analysis. To do so, we applied
association rule learning using the apriori algorithm (Agrawal et al., 1994)
as implemented in the R package arules® to our data, treating each link as
a transaction containing two items: its target type and its purpose. We used
four as the support threshold and 0.7 as the confidence threshold, i.e., all the
rules that we extracted are supported by at least four data points, and we
have at least a 70% confidence that the left-hand side of the rule implies the
right-hand side.

Table 7 shows the association rules extracted from our data with these
settings, separately for each stratum in our sample. Especially in commonly-
linked domains, we observe a tight connection between keeping files in sync and
links no longer being available, i.e., unknown (404). 85% of the inaccessible
links are related to the purpose of keeping files in sync, and the 78% of links
that were added in commit messages for the purpose of keeping files in sync are
found to be inaccessible. Other than inaccessible links being tightly connected
with the purpose of keeping files in sync, we identified more relationships (e.g.,
between bug report links and the purpose of providing related issues, and links
to software, organization, application, API documentation, and forum thread
are associated with source code context).

6 https://cran.r-project.org/web/packages/arules/index.html

https://cran.r-project.org/web/packages/arules/index.html

18 Million Links in Commit Messages: Purpose, Evolution, and Decay 15

Table 7: Associations between link target type and link purpose.

strata association rule conf. supp.
common unknown (404) = version control sync 0.85 132
common version control sync = unknown (404) 0.78 132
common metadata = patch 0.85 72
common bug report = related issue 0.97 56
common related issue = bug report 0.80 56
sometimes software homepage = source code context 0.81 21
sometimes bug report = related issue 0.87 20
sometimes version control sync = unknown (404) 0.94 17
sometimes organization homepage = source code context 0.85 11
sometimes application = source code context 0.86 6
rare unknown (404) = source code context 0.77 125
rare other = source code context 0.80 41
rare software homepage = source code context 0.86 19
rare application = source code context 1.00 15
rare API documentation = source code context 0.75 9
rare commented-out source code = unknown (404) 0.89 8
rare forum thread = source code context 1.00 4

After examining commit messages containing 171 Subversion-related links
(links containing ‘svn’), we found that five cases were inaccessible on GitHub,
164 messages contained the keyword ‘git-svn-id’, and two contained the key-
word ‘svnmerge’. The ‘git-svn-id’ is a keyword that appears when migrating
from Subversion to Git, so the fact that this link is currently inaccessible does
not mean that any important information is missing. The keyword ‘svnmerge’
is related to merging in Subversion, and not being able to access this link can
be problematic for understanding merge details. However, the number of such
commit messages is small.

RQ3 Summary: For domains that are sometimes and rarely linked,
source code context is the most prevalent purpose in commit mes-
sages. The purpose version control sync is particularly common for
commonly linked domains.

5.4 Repeated Links (RQ4)

Table 8 shows the number of categories we have identified in repeated links. We
observed that only 5.7% and 6.3% of sample from commonly linked domains
and domains sometimes linked appear more than once in their commit histories
and no link repeatedly appears in rarely linked domains. The result shows that,
in most cases, developers use external documents only once to complete a task.
For commonly linked domains, same data source is the most frequent reason,
accounting for 12 links, followed by same purpose (9). For domains that are
sometimes linked, same purpose is the most common reason, accounting for 8

16 Tao Xiao X et al.

Table 8: Categories of links that repeatedly appear in the commit history.

Category common sometimes rare frequency
same data source 12 (3.1%) 6 (1.6%) 0 (0%) 2-260
same purpose 9 (2.3%) 8 (2.1%) 0 (0%) 2-8
same reference 0 (0.0%) 4 (1.0%) 0 (0%) 2-5
other 1 (0.3%) 6 (1.6%) 0 (0%) 2-28
sum 22(5.7%) 24 (6.3%) 0(0%) -

Table 9: Evolution of the link status of our sample in Wayback Machine and
our coding in RQ2.

20200316 20210316 20220316 link target in RQ2 # of links

200 200 200 Not unknown (404) 389 (34%)
200 200 200 unknown (404) 128 (11%)
200 200 Not Found unknown (404) 1 (0%)
200 Not Found 200 unknown (404) 3 (0%)
Not Found 200 200 unknown (404) 1 (0%)
200 200 Not Found Not unknown (404) 4 (0%)
200 Not Found 200 Not unknown (404) 3 (0%)
Not Found 200 200 Not unknown (404) 4 (0%)
Not Found Not Found Not Found unknown (404) 322 (28%)
Not Found Not Found Not Found Not unknown (404) 290 (25%)
sum 1145(100%)

Not unknown (404) represents the link targets that are not identified as unknown (404)
in our coding. Not Found represents the links that are unavailable or not archived in
Wayback Machine.

links, followed by same data source (6). Besides that, the repeated links due
to same data source could vary from 2-260 times. The most frequent link is
pointed to translatewiki.net. The result indicates that developers continuously
use the platform to update their documentation.

This analysis examined links in commit messages when the same files were
edited, whereas the previous study (Hata et al., 2019) examined how links in
code comments were edited. Therefore, the results are not comparable.

RQ4 Summary: Repeatedly referenced links in commit messages oc-
cur infrequently. Four percent of our sample is repeatedly referenced in
the history of commit messages. The same data source is the most
common reason for developers repeatedly referencing links in commit
messages. The frequency of the links being repeatedly referenced varies
from 2-260 times for same data source.

18 Million Links in Commit Messages: Purpose, Evolution, and Decay 17

5.5 Link Target Evolution (RQ5)

To investigate the evolution of link targets, we conducted a quantitative anal-
ysis of our sample. Table 9 shows the results of this analysis. Approximately
a third of the links in our sample exist permanently, representing 34% of
our sample. Among these permanent links, tutorial or article (67), other
(54), and software homepage (47) are the most frequent link targets. In de-
tail, most link targets are available that are considered official (e.g., 82% of
repository links, 85% of software homepage links, 86% of application
links, 88% of personal homepage links, and 94% of organization home-
page links) or documentation (e.g., 85% of tutorial or article links, 86%
of blog post links, 88% of API documentation links, 100% of book content
links, 100% of license links, and 100% of Q&A thread links) web pages. In
contrast, we find the minority of link targets are available that are considered
as temporarily available software artifacts, e.g., only 9% of patch links, 25%
of pull request links, 38% of research paper links, 41% of bug report
links, and 41% of forum thread links.

We further investigate a total of 133 links (the third row to the sixth
row of Table 9) that exist at least in one closest snapshot but we identify
as unknown (404) in RQ2. We code link targets of these links in Wayback
snapshots following our coding guide in RQ2. We find that 24 links are still
coded as unknown (404), accounting for 18% of these links. In addition to that,
tutorial or article and software homepage are frequently occurring link
targets, accounting for 20 links (15%) and 19 links (14%), respectively. We
also code 11 links (the seventh row to the ninth row of Table 9) that have at
least existed in one closest snapshot and we identified them as Not unknown
(404) in RQ2. We observe that the link targets are not changed.

28% of the links in our sample are unavailable or not archived in snapshots
and our coding. Besides that, a quarter of links in our sample are unavailable
or are not archived in snapshots but are not identified as unknown (404)
in our coding. To investigate whether these 290 links are unavailable or are
not archived in snapshots, we attempted to request these 290 links with a
maximum of ten retries. We find that only 24 of 290 links are unavailable
(i.e., 15 links are identified as other in RQ2). Thus, we find 14% of links
(2‘%25’3 ~ 14%) that evolve and become unavailable over time.

These results indicate that links in commit messages are fragile, unsta-
ble, and easily inaccessible; these links could cause knowledge loss from this
communication channel between commit authors and developers.

To investigate the evolution of link targets in more detail, we conducted
one quantitative case study with the subset of links pointing to Stack Overflow.
Of the 18,201,165 links, there are 9,696 links pointing to 7,315 distinct link
targets on stackoverflow.com. Among those Stack Overflow links, there are
varieties of expressions, e.g., an abbreviated path to an answer (/a/(answer
id)), an abbreviated path to a question (/q/(question id)), and a full path
to a question (/questions/(question id)/(title)). Older links start with
‘http://’ and newer links start with ‘https://’.

18 Tao Xiao X et al.

100
|

80
|

40

20
|

8
—— 8

j00 WID00O @
— }’cmalxmoo o o o
— H’amm(mm(m 000 o o o o o o o

T T T
Text Edits Comments Answers Title Edits Total

Fig. 4: Number of changes to the linked Stack Overflow threads after they
were first referenced.

We manually removed 122 commit-link pairs where the link was not re-
ferring to a specific Stack Overflow thread (e.g., Stack Overflow homepage),
which left us with links to 6,973 unique post IDs. For each Stack Overflow
link, we identified the timestamp of when the link was referenced in a commit
message. For duplicate links, we consider only the oldest timestamp, leaving
us with 6,973 distinct links and the oldest commit that referred to them. We
created a statistically representative random sample of 364 links (confidence
interval: 5%; confidence level: 95%) of this data for our analysis.” The calcula-
tion of statistically significant sample sizes based on population size, confidence
interval, and confidence level is well established by Krejcie and Morgan (1970).
We excluded three commits that were no longer available on GitHub at the
time of analysis.

We then used the SOTorrent data set (Baltes et al., 2018) to investigate
the extent to which Stack Overflow content had changed since the link to
the question or answer had been referenced in a commit message. We queried
SOTorrent to determine the following metrics for each link:

— the number of text edits on any post (i.e., question or answer) in the same
thread,

7 https://www.surveysystem.com/sscalc.htm

https://www.surveysystem.com/sscalc.htm

18 Million Links in Commit Messages: Purpose, Evolution, and Decay 19

— the number of new comments on any post (i.e., question or answer) in the
same thread,

— the number of new answers in the same thread, and

— the number of edits to the thread title.

Figure 4 shows the results of this analysis. More than half of all Stack
Overflow threads experienced at least one change (median: 2, third quartile:
7) after they were referenced in a commit message, and more than a quarter of
these links attracted at least one new comment in the meantime (median: 0,
third quartile: 3). Although the number of new answers to a thread was zero
in the median case, a quarter of the Stack Overflow threads attracted at least
one new answer after the link was referenced in a commit message (median: 0,
third quartile: 1). In total, only 142 (39%) of the 361 Stack Overflow threads
in our sample did not undergo any change after being included in a commit
message.

The most extreme example in our sample—a Stack Overflow thread titled
“C++ Singleton design pattern”8—had 11 new answers added (out of a total
of 24) and attracted 73 new comments and 25 edits after being first referenced
in a commit message in early July 2014.

RQ5 Summary: In summary, 14% of links are prone to evolve and
become unavailable over time. Moreover, in a case study of Stack Over-
flow, we find that more than half of Stack Overflow threads linked in
commit messages attracted at least one change (text edit, new com-
ment, new answer, or title edit) after they were referenced.

5.6 Link Decay (RQ6)

We identified 4,659,236 inaccessible links from the web content of the 6,667,207
unique links (70%). Table 10 shows the domains with more than 30,000 inac-
cessible links. The svn.apache.org is the domain that occurs most frequently in
these inaccessible links, accounting for 585,149 of the 607,873 links in commit
messages (96%).

Upon closer inspection, most domains with a large number of inaccessible
links are related to SVN (SubVersioN) repositories; for instance, svn.apache.org
is the domain for Apache Software Foundation Subversion Server. This result
confirms our finding in RQ3 and RQ5, which inaccessible links and the purpose
of keeping files in sync are tightly connected in our sample (RQ3), and patch
is temporarily available software artifacts (RQ5). The gerrit.instructure.com
domain is used for Gerrit Code Review, which requires sign-in to be accessed.
Besides that, the links of github.com domain are unable to be accessed since
they are no longer available or pointing to private repositories. Moreover, only

8 https://stackoverflow.com/q/1008019

https://stackoverflow.com/q/1008019

20 Tao Xiao X et al.

Table 10: Domains with large number of inaccessible links

domain # inaccessible links total links % inaccessible links
svn.apache.org 585,149 607,873 (96%
llvm.org 408,888 410,396 (99%
svn.code.sf.net 370,339 370,351 (99%
www.virtualbox.org 159,144 159,178 (99%
SVN.0Sgeo.org 89,719 89,721 (99%
anonsvn.ncbi.nlm.nih.gov 76,725 76,725 (100%
root.cern.ch 75,289 75,568 (99%
svn.wxwidgets.org 68,954 68,954 (100%
SVN.aros.org 52,884 52,884 (100%
dev.geogebra.org 46,975 46,988 (99%
svn.blender.org 46,030 46,067 (99%
develop.svn.wordpress.org 41,321 41,325 (99%
core.svn.wordpress.org 41,213 41,213 (100%
svn.codehaus.org 41,202 41,202 (100%
svn.parrot.org 39,973 39,973 (100%
svn.erpb.org 38,292 38,322 (99%
source.sakaiproject.org 36,614 36,684 (99%
v8.googlecode.com 36,013 36,013 (100%
gerrit.instructure.com 34,884 36,708 (95%
svn.opendtect.org 33,977 33,977 (100%
svn.jboss.org 33,799 33,799 (100%
github.com 33,398 405,784 (8%

8% of the links belonging to github.com domain are inaccessible in our data
set.

Most of the inaccessible links in commit messages belong to domains for
SVN repositories (e.g., svn.apache.org) instead of github.com domain in source
code comments. These SVN repository domains have a high chance to be
inaccessible, i.e., at least 96%. We also observed these SVN-related links are
inaccessible in RQ3, usually these links are introduced in commit messages
with the keyword ‘git-svn-id’ that appears in the transition from Subversion
to Git, so the fact that this link is currently inaccessible does not mean that
any important information is missing.

RQ6 Summary: We observe that 70% of links are not available, con-
sidering all unique links. The most frequently occurring domains ac-
counting for inaccessible links are related to SVN repositories.

6 Discussion

In this section, we first compare the different roles that links play between
source code comments and commit messages. Second, we make recommenda-
tions to developers and researchers based on our results.

18 Million Links in Commit Messages: Purpose, Evolution, and Decay 21

6.1 Comparisons of the roles of links between source code comments and
commit messages

Based on our results, we make the following comparison in each RQ.

Prevalence of Links (RQ1). On the one hand, we find that the average
ratio of repositories with links decreases from 89% (Hata et al., 2019) to 85%
in Figure 3(a). Especially, PHP has the highest ratio of repositories with links
in source code comments (92%), has decreased to the third lowest ratio of
repositories with links in commit messages (84%) in Figure 3(a), accounting
for eight percentage points.

On the other hand, we obtained around two times as many links as in source
code comments (9.6 million links). Furthermore, domain diversity in commit
messages (46,742 distinct domains of 18 million links) is lower than links in
source code comments (57,039 distinct domains of 9.6 million links). The me-
dian values of different domains per repository have decreased by a margin of
2-10 domains in Figure 3(b). The code.google.com domain is more frequently
referenced in commit messages (from 7th rank to 3rd rank in Figure 3(c)).
The ranks of licensing-related domains decreased in commit messages, e.g.,
www.apache.org (4th rank in source code comments) and www.gnu.org (6th
rank in source code comments). However, the ranks of committing related
domains increased, e.g., travis-ci.org.

These comparison results indicate that developers tend to reference more
links in commit messages to provide commit-related information to reviewers
or other developers, however, the diversity of domains is lower than for links
in source code comments.

Link Targets (RQ2). Table 5 shows the results of link types in commit
messages and source code comments. The decay of links (inaccessible) in com-
mit messages is worse than in source code comments. In detail, the inaccessible
links have increased from 7-37% to 34-43%. Even for the domains that are
commonly linked, link decay has become a common issue in commit messages
(from 7% in source code comments to 42% in commit messages).

Due to the different nature of code comments and commit messages, the
license information has changed from the majority of link targets in source
code comments (0-54%) to the minority of link targets in commit messages
(0-1%). This finding confirms the result of RQ1, that the license information
domains are not in the top ten popular domains in commit messages. On the
one hand, there are two link targets (GitHub profile and Stack Overflow),
which are not found in commit messages. On the other hand, we also find
three new link targets, such as repository, pull request, and patch.

These comparison results indicate that developers tend to reference links
that are temporarily available in commit messages. These links are short-lived
in the commit process even though they are linked to common domains. In
commit messages, developers are more likely to reference commit process-
related links, e.g., bug reports, pull requests, and patches.

Link Purpose (RQ3) Table 6 shows the results of link purposes in com-
mit messages and source code comments. Providing metadata purpose has

22 Tao Xiao X et al.

been dramatically reduced to 3-22% in commit messages from 11-75% in
source code comments, as commit messages focus on the context of changes,
rather than licenses or author information.

On the contrary, providing context purpose has been indirectly increased
to 7-71% in commit messages from 5-21% in source code comments (espe-
cially for domains that are rarely linked). On the one hand, four link purposes
(commented-out source code,link-only, self-admitted technical debt,
and @see) become rare or even do not appear in commit messages. On the
other hand, we also observe two new purposes, such as version control sync
and related issue.

These comparison results indicate that developers tend to reference short-
lived link targets to keep files in sync. Since the main purpose of the commit
message is to identify changes in this commit, developers tend to reference di-
verse link targets with the purpose of providing additional information related
to the commit.

Link Target Evolution (RQ5) We can compare the results of the Stack
Overflow case study to links in source code comments (Hata et al., 2019).
In Figure 4, the median values of each change in commit messages share the
same trend in source code comments, i.e., Comments > Text Edits > Answers
> Title Edits. However, only 91 (24%) of the 372 Stack Overflow threads in
source code comments did not undergo any change. These comparison results
indicate that Stack Overflow links referenced in commit messages tend to be
less prone to change than those referenced in source code comments.

Link Decay (RQ6) When comparing this result to links in source code
comments (Hata et al., 2019), the link decay in commit messages is heavily
worse than in source code comments from this quantitative analysis, i.e., 70%
of links in commit messages and 18.8% of links in source code comments are
inaccessible. These comparison results indicate that commit messages often
contain links to old systems or services and are in danger of information loss
due to broken links.

As we have discussed above, the behaviors that developers follow to ref-
erence external resources in the two different software artifacts are different.
Source code comments and commit messages are two important software arti-
facts in the development process that developers can use to share knowledge
related to code or commits with their communities. It is important to un-
derstand the role of links in these two software artifacts, since compared to
natural language, links contain richer information that could be useful in un-
derstanding code or commits.

In our paper, we find that developers tend to reference more links from
fewer domains (RQ1) in commit messages; however, these links are more likely
to be short-lived and related to the commit process with the purpose of keeping
files in sync (e.g., bug report, pull request, and patch) (RQs1-3). To include
complete information to describe the commit to the extent possible, develop-
ers reference diverse links (e.g., software, organization, application, API doc-
umentation, and forum thread) (RQ3). The link decay in commit messages
is substantially worse than in source comments, especially for links to SVN

18 Million Links in Commit Messages: Purpose, Evolution, and Decay 23

repositories (RQ6). This issue could be a major cause of knowledge loss related
to commit messages. In a case study of links pointing to Stack Overflow, we
find that Stack Overflow links referenced in commit messages tend to be less
prone to change than similar links in source code comments (RQ5).

In summary, we can see that links in source code comments are comple-
mentary to the source code, they provide relatively longer-lived information
to help developers easily understand the metadata of code (i.e., license or soft-
ware homepage as basic information for this code). In terms of the commit
messages, links are more likely to be used as additional information related to
changes or as a sign for syncing files to explain changes.

6.2 Recommendations

Based on our findings, we make the following recommendations for developers
and researchers. First, we recommend to developers:

— Pay special attention to maintaining commit related links. We find that
developers tend to use links to reference software artifacts that are short-
lived and related to the commit process (e.g., bug report, pull request, and
patch). Developers should pay special attention to maintaining these links,
since these software artifacts are important for understanding a commit.
Moreover, these short-lived software artifacts can cause knowledge loss in
the community.

— Reference permanent links in commit messages. We find that inaccessi-
ble links are prevalent in commit messages (34-43% of links in our sample
and 70% of the distinct links in our data set). Commit messages are a crit-
ical means of communication between developers and reviewers, and links
in commit messages are special containers for providing external and inter-
nal knowledge. Building stable traceability links between diverse software
artifacts (e.g., bug reports, patchs, and API documentation) and commits
could support knowledge sharing in the community.

— Fix inaccessible links when generating release notes from commit mes-
sages. We find that link decay is a common issue in commit messages.
Commit messages can be used to generate release notes. Wu et al. (2022)
analyzed 1,731 GitHub issues that are related to release notes, they found
that 20.81% of these issue reports complained about wrong or broken links
in the release note. Thus, to avoid suffering from the link decay issue in
release notes, developers should fix or omit these inaccessible links from
the release notes generation.

Second, we recommend to researchers:

— Further studies of traceability links between other software artifacts
and commits. We find various link targets exist in commit messages, e.g.,
patch, bug report, and tutorial or article. Bug reports have been studied, for
example, Sun et al. (2017) recover missing issue-commit links by revisiting
file relevance. We suggest that researchers should investigate traceability
links between other software artifacts and commits.

24 Tao Xiao X et al.

— Estimate the impact of the link decay in commit messages. In RQ2
and RQ3, we find that role of the inaccessible links is associated with
the purpose of keeping files in sync. We argue that link decay is indeed a
problem, as it renders the information resource useless (i.e., a reviewer or
user cannot access the link that holds supplementary information). Since
this breakdown in information will result in a breakdown in communica-
tion and knowledge acquisition in the project, our plan is to detect cases
where a inaccessible link generates a discussion among interested parties.
Depending on the situation, these removals of informal may cause delays
in review time, increased discussion, and overall acceptance of code com-
mits. Analyzing such characteristics, for example, could shed light on the
negative impact of inaccessible links on software development.

— Tools to support common commit message templates. We find that links
in commit messages point to a smaller range of different domains compared
to links in source code comments, suggesting that there are common use
cases for links in commit messages. A promising research direction could
be the creation of templates for commit messages to increase the proba-
bility that developers remember to add links where relevant, for example,
following the work on using stereotypes to characterize commits (Dragan
et al., 2011).

7 Threats to Validity

In this section, we discuss the threats to the validity of our study.
Construct Validity. To compare the role of links between source code
comments and commit messages, we used the same stratified sample of repos-
itories as the previous study (Hata et al., 2019). However, the use of the same
list of repositories may introduce an inconsistency in the comparison due to
the presence of private or unavailable repositories. To keep the consistent com-
parison between links in source code comments and commit messages, we only
consider http(s) links as URLs in commit messages by the regular expression.
For work on other kinds of links in the context of software development, we
refer readers to Schermann et al. (2015) who studied the interlinking charac-
teristics in commits and issues. Future work is needed to gain a global picture
of links in commit messages for different URL protocols, e.g., FTP and SSH.
Content Validity. In our study, we manually classified a sample of 1,145
links in commit messages, which carries the risk of undiscovered link targets
and link purposes in commit messages. Since we are unable to reliably infer
the type and the intended purpose of links for which the target is no longer
accessible, we decided to code such links consistently as unknown (404) similar
to previous study (Hata et al., 2019). Trying to guess the type and intended
purpose for a subset of these links (e.g., https://svn.apache.org/repos/
asf/subversion/trunk@851235 could be coded as a patch) would likely have
had an impact on the results reported for link types and purposes since the
target content is not always obvious from the link alone and since not all links

https://svn.apache.org/repos/asf/subversion/trunk@851235
https://svn.apache.org/repos/asf/subversion/trunk@851235

18 Million Links in Commit Messages: Purpose, Evolution, and Decay 25

were archived in a consistent manner in Wayback Machine or similar services.
Finally, as part of the qualitative analysis, we defined three strata of samples
generated visually from the distribution of the data. Although subjective, we
are confident in this sampling, especially since this data does not follow a
normal Gaussian distribution.

Internal Validity. To answer RQs2—4, we conducted qualitative studies
of a sample of all links in our data set. These qualitative studies are manual
analyses that were conducted according to our coding guides. These codes may
be inadequate due to the subjective nature of understanding the coding guides.
To mitigate this threat, we require Fleiss’s kappa agreements (Fleiss, 1971) of
at least “Substantial agreement” for the understanding of the coding guides
in RQs2-3, following previous work (Wang et al., 2021; Xiao et al., 2021). In
RQ4, we define the coding guides as rules that automatically classify links.
The rules are dependent on the link target domains and the coding results of
RQ2.

External Validity Although we analyzed a large number of commit mes-
sages from GitHub repositories, our results may not generalize to industry
or other open-source artifacts, in general. Some open-source repositories are
hosted outside of GitHub, e.g., on GitLab or private servers.

8 Related Work

In this section, we discuss existing work related to commit messages, knowledge
sharing, and link sharing.

8.1 Commit Messages

In modern software development, developers submit commits to version control
systems to integrate new features or fix bugs. Commit messages are required
to document or summarize such changes. While the size and complexity of
software systems grow with an increasing number of commits, those commit
messages become critical to understanding code changes, especially if issues
occur.

In the study of Alali et al. (2008), they found that commit messages are
coupled with three size-based characteristics of commits (number of files, lines,
and hunks). As external documentation of source code changes, commit mes-
sages play a critical role in open-source projects. Open-source projects often
have rules about commit messages to ensure governance, but as a community
based on voluntary contributions, it is difficult to enforce such rules (O’mahony
and Ferraro, 2007). Therefore, Dyer et al. (2013) observed that there have been
around 14% of commit messages in more than 23,000 open-source SourceForge
Java projects that are completely empty. Santos and Hindle (2016) used the
n-gram cross entropy of text in commit messages to successfully identify com-
mits that were likely to make a build fail. Commit messages are also used as a

26 Tao Xiao X et al.

link between issue reports and commits (Xie et al., 2019), recommend refactor-
ing opportunities (Rebai et al., 2020), detect and classify refactoring descrip-
tions (Krasniqi and Cleland-Huang, 2020), identify security issues (Zhou and
Sharma, 2017), and identify whether this commit can be skipped by continuous
integration (Abdalkareem et al., 2020). However, due to the voluntary contri-
bution of open-source projects and time pressures of developers (O’mahony
and Ferraro, 2007; Maalej and Happel, 2009; Murphy, 2009; D’Ambros et al.,
2010), commit messages can be non-informative, lack information, meaning-
less, or completely empty (Maalej and Happel, 2010; Tian et al., 2022; Dyer
et al., 2013; Liu et al., 2020). Therefore, many researchers have proposed
commit message generation tools to facilitate the understanding of commit
changes. For example, Liu et al. (2020) described ATOM, a tool to encode ab-
stract syntax tree paths of diffs to generate commit messages. Similarly, Huang
et al. (2020) presented ChangeDoc, an approach to generate commit messages
from existing messages. In this study, we recommend that developers include
permanent links in their commit messages to prevent knowledge loss during
the commit process. However, it is possible that developers may not always fol-
low this recommendation. Therefore, we suggest implementing an approach to
automatically generate commit messages and archive links for changes, which
would facilitate the preservation of knowledge during the commit process.

Moreover, commit messages are critical for knowledge transfer during project
maintenance. Fu et al. (2015) presented a semi-supervised Latent Dirichlet Al-
location based approach to automatically classify change messages (i.e., Cor-
rective, Perfective, and Adaptive). In validation surveys, they found that this
approach can be applied to cross-projects; automatic classification results can
reach around 70% in agreements with developers. Sarwar et al. (2020) also pre-
sented an approach using transfer learning to classify commit messages into
the same categories. Commit messages help developers understand changes
and their underlying rationale with less effort, process influences, and less bias
between communication. Mockus and Votta (2000) identified four types of
changes based on commit messages: adding new functionality, repairing faults,
restructuring the code to accommodate future changes, and code inspection
rework. The messages help to reduce efforts on other software development
tasks: generate release notes (Moreno et al., 2014). In this study, we did not
examine the relationship between types of links and types of changes. However,
we plan to address this aspect in future research.

Unlike the aforementioned studies, our study investigates links as one rep-
resentation of knowledge in commit messages. Investigating links in commit
messages enables us to understand the role they play as well as potential is-
sues with links in commit messages. In our notion, links form an important
communication channel between the initial code authors and later reviewers
and maintainers.

18 Million Links in Commit Messages: Purpose, Evolution, and Decay 27

8.2 Knowledge Sharing

Knowledge sharing is a central aspect of software development. Knowledge is
transferred or exchanged among people and communities on online platforms,
for example, Wikipedia (Kittur and Kraut, 2010; Forte et al., 2012; Nagar,
2012) and GitHub (Dabbish et al., 2012). Dabbish et al. (2012) interviewed
light and heavy GitHub users, and showed that developers made a variety of
social inferences about other developers and projects to collaborate, learn and
manage projects using the networked activity information. This study also
suggested that transparency of such the networked activity information can
support knowledge sharing, new ideas, and community. Wattanakriengkrai
et al. (2022) investigated the referencing of academic papers in README
files of GitHub repositories. They found that this knowledge sharing is rarely
occurring (0.4%), however, the majority of these referenced academic papers
are open access (98.5%). We also found a few links referenced to academic
papers in commit messages, which indicate such knowledge sharing is also
rarely occurring in commit messages.

In addition to GitHub, Aniche et al. (2018) surveyed the Reddit program-
ming subreddit and analyzed Reddit and Hacker News posts. They found that
development posts are the highly occurring theme, and these posts are mostly
related to programming or markup languages. Developers on the r/program-
ming subreddit aim at learning, but on Hacker News, they focus more on
publicizing news. They also suggested researchers expand Reddit and Hacker
News as sources for developer knowledge. Furthermore, other research focuses
on knowledge sharing on Q&A sites (Movshovitz-Attias et al., 2013; Vasilescu
et al., 2014; Baltes et al., 2022), between Q&A sites and GitHub (Vasilescu
et al., 2013), and GitHub discussions (Hata et al., 2022). Inspired by these
works, we expand links in commit messages as a source for developer knowl-
edge.

Although plenty of studies widely investigate knowledge sharing in software
engineering, there is no study that focuses on links as special containers that
provide additional knowledge for developers in commit messages. In this study,
we focus on the different link targets and purposes that they served on commit
messages, rather than natural language, to study knowledge sharing.

8.3 Link Sharing

As one convenient way of knowledge sharing, link sharing has been widely
adopted and explored in developer communities (i.e., Q&A sites, GitHub, code
review). Gémez et al. (2013) found that a significant proportion of links shared
on Stack Overflow, in particular, were used to transfer knowledge about soft-
ware development innovations such as libraries and tools. Ye et al. (2017)
also analyzed link sharing activities in Stack Overflow to study the structural
and dynamic properties of the emergent knowledge network in Stack Overflow.
They discovered that developers share links for diverse purposes, e.g., reference

28 Tao Xiao X et al.

information for problem solving is the most occurring purpose. In addition to
that, external links are investigated on aspects of broken links (Liu et al., 2021)
and repeatedly referenced links Liu et al. (2022b) in Stack Overflow posts.

A previous study (Hata et al., 2019) analyzed 9.6 million links that ex-
ist in source code comments. They explored that link sharing is common in
source code comments, more than 80% of the repositories contained at least
one link. They also identified the kinds of link targets (i.e., licenses, software
homepages, and specifications) and link sharing purposes (providing meta-
data or attribution). Zampetti et al. (2017) investigated to what extent and
for which purpose developers refer to external online resources in pull requests.
The findings of their investigation suggest that developers frequently consult
external resources for the purpose of acquiring new knowledge or resolving spe-
cific issues. Aghajani et al. (2019) presented an empirical study which shows
“Outdated/Obsolete references” are one of the issues in software documen-
tation. Furthermore, Baltes and Diehl (2019) found that 40% of their survey
participants added a source code comment in GitHub projects with a Stack
Overflow link to the corresponding question or answer. In addition to the
Stack Overflow link to a question or answer, issue report links were studied.
Zhang et al. (2018) showed that developers tend to link more cross-project or
cross-ecosystem issues over time. Zhang et al. (2020) proposed an approach
called iLinker for issue knowledge acquisition in GitHub projects, it can im-
prove the development efficiency of GitHub projects. Similar to previous work,
we also analyzed links in GitHub artifacts. We found that link decay is a fre-
quent phenomenon in commit messages. Moreover, developers reference links
for purpose of providing context.

Rath et al. (2018) addressed missing links between commits and issues,
and proposed an approach to generate the missing links by a combination
of process and text-related features. The practice of link sharing was also
studied in the context of code review. Wang et al. (2021) performed a mixed-
method approach to highlight the role that shared links play in the review
discussion. Their results show that the link is served as an important resource
to fulfill various information needs for patch authors and review teams. Liu
et al. (2022a) proposed an approach to identify references between projects
by extracting links from pull requests, issues, and commits. These links were
obtained by patterns of URL, ID of issue, pull request or commit. Unlike
these works in the code review process, we focus on the comparison between
the roles of links in commit messages and source code comments to obtain
an understanding of informal and initial knowledge sharing in the software
development process.

Inspired by these past studies of link sharing, we conduct the first study on
links in commit messages. Similar to prior work, we investigate the prevalence,
targets, purposes of links and the phenomenon of links (i.e., repeated link
reference, link evolution, and link decay) in commit messages.

18 Million Links in Commit Messages: Purpose, Evolution, and Decay 29

9 Conclusion

In this paper, we conducted: (i) a quantitative study of 18 million links from
commit messages in 23,110 Git repositories to investigate the prevalence of
links in commit messages; (ii) qualitative studies of a stratified sample of
1,145 links to determine the kinds of link targets, the purposes of referencing
these links and their repeated links; (iii) a quantitative study to investigate the
evolution of link targets; and (iv) a quantitative study to investigate how the
link decay issue is common in commit messages and investigate which domains
frequently affect link decay.

We observed that (i) links are frequently occurring in commit messages,
accounting for at least 83% of GitHub repositories in our study; (ii) 34-43% of
links in our sample are unavailable, other than that, links to patch are common
in commit messages; (iii) the purpose of adding additional information is the
most prevalent in commit messages; (iv) repeated links are rarely occurring in
commit messages, accounting for four percent of our sample; (v) 14% of the
links are prone to evolve to become unavailable over time; and (vi) link decay
is a common issue in commit messages, around 70% of the distinct links in our
study are inaccessible. We foresee many promising avenues for future work,
such as tool support to fix inaccessible links, expanding our coded corpus to
other software artifacts, and further studies of commit messages.

Acknowledgements This work was inspired by the International Work-
shop series on Dynamic Software Documentation, held at McGill’s Bellairs
Research Institute, and was supported by JSPS KAKENHI Grant Numbers
JP18H04094, JP20K19774, JP20H05706, and JP22K11970 and JST PRESTO
Grant Number JPMJPR22P6.

Data Availability The datasets generated during and/or analysed during
the current study are available in the Zenodo repository, https://doi.org/
10.5281/zenodo . 7536500.

Declarations

Conflict of Interests The authors declare that Sebastian Baltes, Hideaki
Hata, Christoph Treude, and Raula Gaikovina Kula are members of the EMSE
Editorial Board. All co-authors have seen and agree with the contents of the
manuscript and there is no financial interest to report.

https://doi.org/10.5281/zenodo.7536500
https://doi.org/10.5281/zenodo.7536500

30 Tao Xiao X et al.

References

Abdalkareem R, Mujahid S, Shihab E (2020) A machine learning approach to
improve the detection of ci skip commits. IEEE Transactions on Software
Engineering

Aghajani E, Nagy C, Vega-Médrquez OL, Linares-Vasquez M, Moreno L,
Bavota G, Lanza M (2019) Software documentation issues unveiled. In: 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE),
IEEE, pp 1199-1210

Agrawal R, Srikant R, et al. (1994) Fast algorithms for mining association
rules. In: Proc. 20th int. conf. very large data bases, VLDB, Citeseer, vol
1215, pp 487-499

Alali A, Kagdi H, Maletic JI (2008) What’s a typical commit? a characteriza-
tion of open source software repositories. In: 2008 16th IEEE international
conference on program comprehension, IEEE, pp 182-191

Aniche M, Treude C, Steinmacher I, Wiese I, Pinto G, Storey MA, Gerosa MA
(2018) How modern news aggregators help development communities shape
and share knowledge. In: 2018 IEEE/ACM 40th International Conference
on Software Engineering (ICSE), IEEE, pp 499-510

Baltes S, Diehl S (2019) Usage and attribution of stack overflow code snippets
in github projects. Empirical Software Engineering 24(3):1259-1295

Baltes S, Dumani L, Treude C, Diehl S (2018) Sotorrent: Reconstructing and
analyzing the evolution of stack overflow posts. In: Proceedings of the 15th
international conference on mining software repositories, pp 319-330

Baltes S, Treude C, Robillard MP (2022) Contextual documentation refer-
encing on stack overflow. IEEE Trans Software Eng 48(2):135-149, DOI
10.1109/TSE.2020.2981898, URL https://doi.org/10.1109/TSE.2020.
2981898

Barrie JM, Presti DE (2000) Digital plagiarism-the web giveth and the web
shall taketh. Journal of medical Internet research 2(1):e6

Buse RP, Weimer WR. (2010) Automatically documenting program changes.
In: Proceedings of the IEEE/ACM international conference on Automated
software engineering, pp 3342

Dabbish L, Stuart C, Tsay J, Herbsleb J (2012) Social coding in github: trans-
parency and collaboration in an open software repository. In: Proceedings
of the ACM 2012 conference on computer supported cooperative work, pp
1277-1286

D’Ambros M, Lanza M, Robbes R (2010) Commit 2.0. In: Proceedings of the
1st Workshop on Web 2.0 for Software Engineering, pp 14-19

Dragan N, Collard ML, Hammad M, Maletic JI (2011) Using stereotypes to
help characterize commits. In: 2011 27th IEEE International Conference on
Software Maintenance (ICSM), IEEE, pp 520-523

Dyer R, Nguyen HA, Rajan H, Nguyen TN (2013) Boa: A language and in-
frastructure for analyzing ultra-large-scale software repositories. In: 2013
35th International Conference on Software Engineering (ICSE), IEEE, pp
422431

https://doi.org/10.1109/TSE.2020.2981898
https://doi.org/10.1109/TSE.2020.2981898

18 Million Links in Commit Messages: Purpose, Evolution, and Decay 31

Fleiss JL (1971) Measuring nominal scale agreement among many raters. Psy-
chological bulletin 76(5):378

Forte A, Kittur N, Larco V, Zhu H, Bruckman A, Kraut RE (2012) Coordi-
nation and beyond: social functions of groups in open content production.
In: Proceedings of the ACM 2012 conference on Computer Supported Co-
operative Work, pp 417-426

Fu Y, Yan M, Zhang X, Xu L, Yang D, Kymer JD (2015) Automated clas-
sification of software change messages by semi-supervised latent dirichlet
allocation. Information and Software Technology 57:369-377

Girba T, Kuhn A, Seeberger M, Ducasse S (2005) How developers drive soft-
ware evolution. In: Eighth international workshop on principles of software
evolution (IWPSE’05), IEEE, pp 113-122

Gémez C, Cleary B, Singer L (2013) A study of innovation diffusion through
link sharing on stack overflow. In: 2013 10th Working Conference on Mining
Software Repositories (MSR), IEEE, pp 81-84

Gousios G (2013) The ghtorent dataset and tool suite. In: 2013 10th Working
Conference on Mining Software Repositories (MSR), IEEE, pp 233-236

Hassan AE (2008) The road ahead for mining software repositories. In: 2008
Frontiers of Software Maintenance, IEEE, pp 48-57

Hata H, Treude C, Kula RG, Ishio T (2019) 9.6 million links in source code
comments: Purpose, evolution, and decay. In: 2019 IEEE/ACM 41st Inter-
national Conference on Software Engineering (ICSE), IEEE, pp 1211-1221

Hata H, Novielli N, Baltes S, Kula RG, Treude C (2022) Github discussions:
An exploratory study of early adoption. Empirical Software Engineering
27(1):1-32

Huang Y, Jia N, Zhou HJ, Chen XP, Zheng ZB, Tang MD (2020) Learn-
ing human-written commit messages to document code changes. Journal of
Computer Science and Technology 35(6):1258-1277

Kehoe C, Pitkow J, Rogers J (1998) Gvu’s ninth www user survey report.
Office of

Kittur A, Kraut RE (2010) Beyond wikipedia: coordination and conflict in
online production groups. In: Proceedings of the 2010 ACM conference on
Computer supported cooperative work, pp 215-224

Krasniqi R, Cleland-Huang J (2020) Enhancing source code refactoring de-
tection with explanations from commit messages. In: 2020 IEEE 27th In-
ternational Conference on Software Analysis, Evolution and Reengineering
(SANER), IEEE, pp 512-516

Krejcie RV, Morgan DW (1970) Determining sample size for research activi-
ties. Educational and psychological measurement 30(3):607-610

Liu B, Zhang L, Jiang J, Wang L (2022a) A method for identifying references
between projects in github. Science of Computer Programming 222:102858

Liu J, Xia X, Lo D, Zhang H, Zou Y, Hassan AE, Li S (2021) Broken external
links on stack overflow. IEEE Transactions on Software Engineering

Liu J, Zhang H, Xia X, Lo D, Zou Y, Hassan AE, Li S (2022b) An exploratory
study on the repeatedly shared external links on stack overflow. Empirical
Software Engineering 27(1):1-32

32 Tao Xiao X et al.

Liu S, Gao C, Chen S, Yiu NL, Liu Y (2020) Atom: Commit message genera-
tion based on abstract syntax tree and hybrid ranking. IEEE Transactions
on Software Engineering

Maalej W, Happel HJ (2009) From work to word: How do software developers
describe their work? In: 2009 6th IEEE International Working Conference
on Mining Software Repositories, IEEE, pp 121-130

Maalej W, Happel HJ (2010) Can development work describe itself? In: 2010
7th IEEE working conference on mining software repositories (MSR 2010),
IEEE, pp 191-200

Mockus A, Votta LG (2000) Identifying reasons for software changes using
historic databases. In: icsm, pp 120-130

Moreno L, Bavota G, Di Penta M, Oliveto R, Marcus A, Canfora G (2014)
Automatic generation of release notes. In: Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineer-
ing, pp 484-495

Movshovitz-Attias D, Movshovitz-Attias Y, Steenkiste P, Faloutsos C (2013)
Analysis of the reputation system and user contributions on a question an-
swering website: Stackoverflow. In: 2013 IEEE/ACM International Confer-
ence on Advances in Social Networks Analysis and Mining (ASONAM 2013),
IEEE, pp 886-893

Murphy G (2009) Attacking information overload in software development. In:
2009 IEEE Symposium on Visual Languages and Human-Centric Comput-
ing (VL/HCC), IEEE, pp 44

Murphy J, Hashim NH, O’Connor P (2007) Take me back: validating the
wayback machine. Journal of Computer-Mediated Communication 13(1):60-
75

Nagar Y (2012) What do you think? the structuring of an online commu-
nity as a collective-sensemaking process. In: Proceedings of the ACM 2012
conference on computer supported cooperative work, pp 393-402

O’mahony S, Ferraro F (2007) The emergence of governance in an open source
community. Academy of Management Journal 50(5):1079-1106

Rath M, Rendall J, Guo JL, Cleland-Huang J, Méder P (2018) Traceability in
the wild: automatically augmenting incomplete trace links. In: Proceedings
of the 40th International Conference on Software Engineering, pp 834-845

Rebai S, Kessentini M, Alizadeh V, Sghaier OB, Kazman R (2020) Recom-
mending refactorings via commit message analysis. Information and Soft-
ware Technology 126:106332

Santos EA, Hindle A (2016) Judging a commit by its cover. In: Proceedings
of the 13th International Workshop on Mining Software Repositories-MSR,
vol 16, pp 504-507

Sarwar MU, Zafar S, Mkaouer MW, Walia GS, Malik MZ (2020) Multi-label
classification of commit messages using transfer learning. In: 2020 IEEE
International Symposium on Software Reliability Engineering Workshops
(ISSREW), IEEE, pp 37-42

Schermann G, Brandtner M, Panichella S, Leitner P, Gall H (2015) Discov-
ering loners and phantoms in commit and issue data. In: 2015 IEEE 23rd

18 Million Links in Commit Messages: Purpose, Evolution, and Decay 33

International Conference on Program Comprehension, IEEE, pp 4-14

Sun Y, Wang Q, Yang Y (2017) Frlink: Improving the recovery of missing
issue-commit links by revisiting file relevance. Information and Software
Technology 84:33-47

Tian Y, Zhang Y, Stol KJ, Jiang L, Liu H (2022) What makes a good commit
message? p To be appear

Vasilescu B, Filkov V, Serebrenik A (2013) Stackoverflow and github: Associa-
tions between software development and crowdsourced knowledge. In: 2013
International Conference on Social Computing, IEEE, pp 188-195

Vasilescu B, Serebrenik A, Devanbu P, Filkov V (2014) How social q&a sites
are changing knowledge sharing in open source software communities. In:
Proceedings of the 17th ACM conference on Computer supported coopera-
tive work & social computing, pp 342-354

Viera A, Garrett J (2005) Understanding interobserver agreement: The kappa
statistic. Family medicine

Wang D, Xiao T, Thongtanunam P, Kula RG, Matsumoto K (2021) Under-
standing shared links and their intentions to meet information needs in
modern code review. Empirical Software Engineering 26(5):1-32

Wattanakriengkrai S, Chinthanet B, Hata H, Kula RG, Treude C, Guo J,
Matsumoto K (2022) Github repositories with links to academic papers:
Public access, traceability, and evolution. Journal of Systems and Software
183:111117

Wu J, He H, Xiao W, Gao K, Zhou M (2022) Demystifying software release
note issues on github. In: 2022 IEEE/ACM 30th International Conference
on Program Comprehension (ICPC), pp 602-613, DOI 10.1145/3524610.
3527919

Xiao T, Wang D, Mcintosh S, Hata H, Kula RG, Ishio T, Matsumoto K (2021)
Characterizing and mitigating self-admitted technical debt in build systems.
IEEE Transactions on Software Engineering

Xie R, Chen L, Ye W, Li Z, Hu T, Du D, Zhang S (2019) Deeplink: A code
knowledge graph based deep learning approach for issue-commit link re-
covery. In: 2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER), IEEE, pp 434-444

Xiong Y, Meng Z, Shen B, Yin W (2017) Mining developer behavior across
github and stackoverflow. In: SEKE, pp 578-583

Ye D, Xing Z, Kapre N (2017) The structure and dynamics of knowledge net-
work in domain-specific q&a sites: a case study of stack overflow. Empirical
Software Engineering 22(1):375-406

Zampetti F, Ponzanelli L, Bavota G, Mocci A, Di Penta M, Lanza M (2017)
How developers document pull requests with external references. In: 2017
IEEE/ACM 25th International Conference on Program Comprehension
(ICPC), IEEE, pp 23-33

Zhang Y, Yu 'Y, Wang H, Vasilescu B, Filkov V (2018) Within-ecosystem issue
linking: a large-scale study of rails. In: Proceedings of the 7th International
Workshop on Software Mining, pp 12-19

34 Tao Xiao X et al.

Zhang Y, Wu Y, Wang T, Wang H (2020) ilinker: a novel approach for issue
knowledge acquisition in github projects. World Wide Web 23(3):1589-1619

Zhou Y, Sharma A (2017) Automated identification of security issues from
commit messages and bug reports. In: Proceedings of the 2017 11th joint
meeting on foundations of software engineering, pp 914-919

	Introduction
	Research Questions
	Data Collection
	Method
	Results
	Discussion
	Threats to Validity
	Related Work
	Conclusion

