
Characterizing and Mitigating Self-Admitted
Technical Debt in Build Systems

Tao Xiao , Dong Wang , Shane McIntosh , Hideaki Hata , Raula Gaikovina Kula ,

Takashi Ishio ,Member, IEEE, and Kenichi Matsumoto , Senior Member, IEEE

Abstract—Technical Debt is ametaphor used to describe the situation in which long-term software artifact quality is traded for short-term

goals in software projects. In recent years, the concept of self-admitted technical debt (SATD) was proposed, which focuses on debt that is

intentionally introduced and described by developers. Although prior work hasmade important observations about admitted technical debt

in source code, little is known about SATD in build systems. In this paper, we set out to better understand the characteristics of SATD in build

systems. To do so, through a qualitative analysis of 500 SATD comments in theMaven build system of 291 projects, we characterize SATD

by location and rationale (reason and purpose). Our results show that limitations in tools and libraries, and complexities of dependency

management are themost frequent causes, accounting for 50% and 24% of the comments.Wealso find that developers often document

SATD as issues to be fixed later. As a first step towards the automatic detection of SATD rationale, we train classifiers to detect the twomost

frequently occurring reasons and the fourmost frequently occurring purposes of SATD in the content of comments inMaven build systems.

The classifier performance is promising, achieving an F1-score of 0.71–0.79. Finally, within 16 identified ‘ready-to-be-addressed’ SATD

instances, the three SATD submitted by pull requests and the five SATD submitted by issue reports were resolved after developers were

made aware. Our work presents the first step towards understanding technical debt in build systems and opens up avenues for future work,

such as tool support to track andmanageSATDbacklogs.

Index Terms—Self-admitted technical debt, build system, build maintenance

Ç

1 INTRODUCTION

THROUGHOUT the software development process, stake-
holders strive to build functional, maintainable, and

high-quality software. Despite their best efforts, developers
inevitably encounter situations where suboptimal solutions,
known as Technical Debt (TD) are implemented in a software
project [9]. Although studies have traced evidence of TD in
source code, TD covers a range of software artifacts and
processes (i.e., architecture, build, defects, design, docu-
mentation, infrastructure, people, process, requirements,
service, and testing) [2]. Clear evidence of TD is at the core
of self-admitted technical debt (SATD), where developers
record the reasoning behind such suboptimal solutions. Pot-
dar and Shihab [38] observed that SATD existed in 31% of
source code files.

Although prior work on SATD in source code has made
important advances, modern software development has a

broader scope than solely producing source code. Indeed, a
complex collection of other software artifacts and tools is
needed to produce official software releases. At the heart of
these, other artifact is the build system, which orchestrates
tools (e.g., automated test suites, containerization tools,
external and internal dependency management) into a
repeatable (and ideally incremental) process. Software teams
use build system specifications to express dependencies within
and among internal and external software artifacts. We
hypothesize that build systemsmay also suffer from TD.

To the best of our knowledge, there have been no previ-
ous studies that investigate SATD in build specification
files. As suggested by the study on SATD between industry
and open-source system developers, researchers should
expand studies of SATD beyond the source code [51]. To fill
this gap, in this paper, we propose to analyze build files and
their existing SATD. More specifically, we set out to charac-
terize SATD, explore its potential for automation and evalu-
ate SATD mitigation strategies. By analyzing the 500 SATD
comments extracted from 291 GitHub repositories that uti-
lize the Maven build system, we address the following three
research questions:

(RQ1) What are the Characteristics of SATD in Build Systems?
Motivation. It is unclear what characteristics of SATD in

build systems exist. Analyzing SATD characteristics (loca-
tion and rationale) will lay the foundation for understand-
ing the scope of the SATD problems in build systems. In
this research question, we analyze the locations of SATD,
the reasons for SATD to occur, and the purposes that SATD
serve. Tasks like SATD management often require experi-
enced technical stakeholders. Answering this question will
lower the barrier to entry for newcomers who take over a

� Tao Xiao, Dong Wang, Raula Gaikovina Kula, Takashi Ishio, and Kenichi
Matsumoto are with the Nara Institute of Science and Technology, Ikoma,
Nara 630-0192, Japan. E-mail: {tao.xiao.ts2, wang.dong.vt8, raula-k, ishio,
matumoto}@is.naist.jp.

� Shane McIntosh is with the Cheriton School of Computer Science, Univer-
sity of Waterloo, Waterloo, ON N2L 3G1, Canada.
E-mail: shane.mcintosh@uwaterloo.ca.

� Hideaki Hata is with Shinshu University, Matsumoto, Nagano 390-8621,
Japan. E-mail: hata@shinshu-u.ac.jp.

Manuscript received 19 Feb. 2021; revised 21 Sept. 2021; accepted 22 Sept. 2021.
Date of publication 0 . 0000; date of current version 0 . 0000.
This work was supported by JSPS KAKENHI under Grants JP18KT0013,
JP18H04094, JP20K19774, and JP20H05706.
(Corresponding author: Tao Xiao.)
Recommended for acceptance by R. Kazman.
Digital Object Identifier no. 10.1109/TSE.2021.3115772

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-4070-585X
https://orcid.org/0000-0003-4070-585X
https://orcid.org/0000-0003-4070-585X
https://orcid.org/0000-0003-4070-585X
https://orcid.org/0000-0003-4070-585X
https://orcid.org/0000-0002-2004-0902
https://orcid.org/0000-0002-2004-0902
https://orcid.org/0000-0002-2004-0902
https://orcid.org/0000-0002-2004-0902
https://orcid.org/0000-0002-2004-0902
https://orcid.org/0000-0002-0193-3975
https://orcid.org/0000-0002-0193-3975
https://orcid.org/0000-0002-0193-3975
https://orcid.org/0000-0002-0193-3975
https://orcid.org/0000-0002-0193-3975
https://orcid.org/0000-0003-0708-5222
https://orcid.org/0000-0003-0708-5222
https://orcid.org/0000-0003-0708-5222
https://orcid.org/0000-0003-0708-5222
https://orcid.org/0000-0003-0708-5222
https://orcid.org/0000-0003-2324-0608
https://orcid.org/0000-0003-2324-0608
https://orcid.org/0000-0003-2324-0608
https://orcid.org/0000-0003-2324-0608
https://orcid.org/0000-0003-2324-0608
https://orcid.org/0000-0003-4106-699X
https://orcid.org/0000-0003-4106-699X
https://orcid.org/0000-0003-4106-699X
https://orcid.org/0000-0003-4106-699X
https://orcid.org/0000-0003-4106-699X
https://orcid.org/0000-0002-7418-9323
https://orcid.org/0000-0002-7418-9323
https://orcid.org/0000-0002-7418-9323
https://orcid.org/0000-0002-7418-9323
https://orcid.org/0000-0002-7418-9323
mailto:tao.xiao.ts2@is.naist.jp
mailto:wang.dong.vt8@is.naist.jp
mailto:raula-k@is.naist.jp
mailto:ishio@is.naist.jp
mailto:matumoto@is.naist.jp
mailto:shane.mcintosh@uwaterloo.ca
mailto:hata@shinshu-u.ac.jp

legacy system, and non-technical stakeholders who are
responsible for decision making in the context of build sys-
tem maintenance (e.g., project managers). Furthermore, it
will lay the foundation for future research and tool develop-
ment on SATD problems of practical relevance.

(RQ1.1) Location: Which Build File Specifications are Most
Susceptible to SATD?

Results. SATD tends to occur in the plugin configuration
and the external dependencies configuration code, account-
ing for 49% and 32%, respectively.

(RQ1.2) Rationale: What Causes a Developer to Document
SATD and What Purpose Does it Serve?

Results. We analyze rationale along reason and purpose
dimensions. First, we find that there are nine categories of
SATD reasons. The most frequent reasons include the limita-
tions in tools and libraries, and complexities of dependency
management, accounting for 50% and 24% of analyzed
SATD instances, respectively. Second, we find that there are
six purposes for leaving SATD comments, with document-
ing issues to be fixed later and explaining the rationale for a
workaround occurring the most frequently, accounting for
39% and 22% of analyzed SATD instances, respectively.

(RQ2) Can Automated Classifiers Accurately Identify the
Characteristics of SATD in Build Systems?

Motivation. The qualitative approach that we used to
address RQ1 is not scalable enough for large-scale analyses
of SATD categories in build files. Moreover, analysis of
build systems at large organizations like Google would
require an automated approach to be practical [35]. For
practitioners, automatic SATD identification could facilitate
the replication of detection approaches to promote their
adoption, and improve the detection quality and traceabil-
ity. Hence, we explore the feasibility of training automatic
classifiers to identify SATD characteristics.

Results. Experimental results show automation is feasi-
ble, achieving a precision of 0.72 and 0.81, a recall of 0.71
and 0.80, and an F1-score of 0.71 and 0.79 for SATD reasons
and purposes, respectively. Comparing both traditional and
state-of-the-art machine learning techniques, we find that
the auto-sklearn based classifiers achieve the highest value
over the set of baseline classifiers, i.e., Naive Bayes (NB),
Support Vector Machine (SVM), and k-Nearest Neighbor
(kNN) by a margin of 16–25 percentage points in terms of
average F1-score.

(RQ3) ToWhat Extent can SATDbe Removed in Build Systems?
Motivation. The manner by which developers handle

SATD is currently unknown, i.e., whether or not they can be
removed. Hence, we investigate the ‘ready-to-be-addressed’
SATD removal by submitting pull requests and issue
reports. Answering this research question can address the
necessity of proposing automatic tools to identify SATD
comments for researchers and furthermore facilitate better
technical debt management for projects.

Results. Within 16 ‘ready-to-be-addressed’ SATD instan-
ces, we propose pull requests for seven cases, three of which
were merged. Moreover, we produce issue reports for nine
cases, five of which were resolved within 20 days. While
there are a number of factors at play, these responses sug-
gest that developers are receptive and reactive to SATD.

Replication Package. To facilitate replication and future
work in the area, we have prepared a replication package,

which includes raw data, the manually labelled dataset,
and the scripts for reproducing our analyses. The pack-
age is available online at https://github.com/NAIST-SE/
SATDinBuildSystems.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the workflow that we followed to collect
SATD comments. Sections 3, 4, and 5 show the experiments
that we conducted to address RQ1–3, respectively. Section 6
presents the developer survey to obtain developer percep-
tions and evaluate the SATD reason and purpose categories.
Section 7 discusses the recommendations for build system
stakeholders based on our study results. Section 8 situates
our work with respect to the literature on build systems and
technical debt. Section 9 discusses the threats to validity.
Section 10 draws the conclusions and highlights opportuni-
ties for future work.

2 DATA PREPARATION

In this section, we describe the data collection procedure.
Fig. 1 shows an overview of the procedure, which consists
of two steps: (DP1) Extract comments from Maven reposito-
ries; and (DP2) Identify SATD comments.

(DP1) Extract Comments From Maven Repositories. Maven
is a popular build automation tool used primarily for Java
projects. In a large-scale analysis of 177,039 repositories,
McIntosh et al. [33] found that Maven repositories tend to be
most actively maintained. Since developers are actively
updating their Maven files, we suspect that technical debt
may also be accruing. Thus, we select Maven as our studied
build system.

We analyze Java repositories in the dataset shared by
Hata et al. [16]. That dataset includes the Git repositories of
actively developed software projects containing (i) more
than 500 commits; and (ii) at least 100 commits during the
most active two-year period. Forked repositories are
excluded from the analysis. We analyze the latest version
(HEAD revision) of the repositories. The list of HEAD revi-
sions is summarized in the replication package.

We select the Maven specifications from each studied
repository using the filename convention (i.e., pom.xml).

Fig. 1. Overview of the study.

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

https://github.com/NAIST-SE/SATDinBuildSystems
https://github.com/NAIST-SE/SATDinBuildSystems

Each studied repository may have several Maven specifica-
tions. Since the specifications are written in XML, comments
are recognized as content appearing between “<!––” and
“––>” XML tokens. We extract comment content from
Maven specifications using a script that builds upon the
Java SE XML parser.1 Finally, we extract 253,555 comments
from 100,765 POM files in 3,710 Maven repositories.

(DP2) Identify SATD Comments. We detect SATD com-
ments using the keyword-based approach of Potdar and
Shihab [38]. In addition, to reduce the risk of missing SATD
comments and enlarge the dataset, we expand Potdar and
Shihab’s keyword list to include 13 frequent features that
were recommended by Huang et al. [18]. Our adapted list of
SATD keywords is summarized in our online appendix.2 In
the end, we are able to detect 3,424 SATD comments. Table 1
provides an overview of our studied dataset.

To evaluate whether or not the set of keywords being
used for retrieving SATD comments is accurate enough, we
conduct a qualitative study of a statistically representative
and stratified sample of comments that are not identified as
SATD by the keyword-based approach. The size of the sam-
ple comments is calculated to achieve estimates with a con-
fidence level of 95% and a confidence interval of �5%. In
total, we have randomly sampled 384 comments from
248,502 comments that are not identified as SATD by the
keyword-based approach. Then the first two authors manu-
ally checked whether or not they are SATD. In the end, we
identified that only thirteen comments are SATD, account-
ing for 3.4% of comments missing from the keyword-based
approach.

3 CHARACTERIZING SATD COMMENTS (RQ1)

SATD comments may appear in different locations within
build files. Moreover, the rationale for incurring SATD may
differ. In this section, we analyze the locations, reasons for
adoption, and purposes served by SATD comments. To per-
form our analyses, we use a manually-intensive method.
Below, we present our approach to classify SATD comments
according to locations, reasons, and purposes (Section 3.1),
followed by the results (Section 3.2). Finally, we explore the
relationships between locations and reasons, and locations
and purposes (Section 3.3).

3.1 Approach

We apply an open coding approach [8] to classify randomly
sampled SATD comments in build files. Open coding is a
qualitative data analysis method by which artifacts under
inspection (SATD comments in our case) are classified
according to emergent concepts (i.e., codes). After coding,
we apply open card sorting [36] to raise low-level codes to

higher levels and more abstract concepts, especially for
SATD reasons. This approach involves the first three
authors of this paper (the first two authors are graduate stu-
dents and the third author has more than ten years of
research and three years of industrial experience on build
systems). Below, we describe our code saturation, sample
coding, and card sorting procedures in more detail.

Code Saturation. Section 2 shows that there are 3,424
SATD comments out of 253,555 comments appearing in the
curated set of GitHub Maven repositories. Since coding of
all 3,424 instances is impractical, we elect to code a sample
of SATD comments.

First, we initiate a set of codes within the first 50 com-
ments. To discover as complete of a list of SATD locations,
reasons, and purposes as possible, we strive for theoretical
saturation [11] to achieve analytical generalization. Similar
to prior work [17], we set our saturation criterion to 50, i.e.,
the first two authors continue to code randomly selected
SATD comments until no new codes have been discovered
for 50 consecutive comments. Then, they open discussions
on classifying SATD comments in terms of locations, rea-
sons, and purposes and try to reach a consensus on dis-
agreements between them. During these discussions, the
third author resolves each disagreement and suggests possi-
ble improvements on the categories. Finally, we reach satu-
ration after coding 266 SATD comments. Since codes that
emerge late in the process may apply to earlier reviews, we
performed another pass over all of the comments to correct
miscoded entries and tested the level of agreement of our
constructed codes. We calculate the Kappa agreement of
our codes among the first two authors, who independently
coded the locations, reasons, and purposes of all 266 SATD
comments. Cohen’s Kappa for location codes is 0.91 or
‘Almost perfect’ agreement [48], whereas Cohen’s Kappa
for reason and purpose codes are 0.78 and 0.75, respectively,
which indicate ‘Substantial’ agreement [48]. The somewhat
lower agreement can be explained by the need for extrapo-
lation when coding the reason and purpose of an instance
of SATD from its context and comment content.

Sample Coding. To increase the generalizability of our
results, after our codes achieve saturation, we coded addi-
tional SATD comments to reach 500 samples. We divided
the additional 234 samples into two sets (i.e., 117 for each
set). Inspired by the encouraging Kappa agreement, the first
author independently coded the first set, and the second
author independently coded the second set. When coding
each SATD comment, the coders focus on the location, key
reason, and key purpose. For example, a SATD comment
from the Apache OODT project is located in the plugin con-
figuration. The reason of this comment is labelled as
‘External library limitation’ and its purpose is ‘Document
for later fix’. In a total of 500 samples, the coding process
took 120 person-hours.

Since the open coding is an exploratory data analysis tech-
nique, it may be prone to errors. To mitigate errors, we code
in two passes. First, we code based on the comment itself.
After completing an initial round of coding, we perform a
second pass over all of SATD comments to correct miscoded
instances. In the second pass, we code based on contextual
information, such as the surrounding build specification
code, prior commit history, and other relevant development

TABLE 1
Summary of Studied Dataset

Maven repositories # POM files # Comments # SATD comments

3,710 100,765 253,555 3,424

1. https://github.com/takashi-ishio/CommentLister
2. https://doi.org/10.6084/m9.figshare.13018580

XIAO ET AL.: CHARACTERIZING AND MITIGATING SELF-ADMITTED TECHNICAL DEBT IN BUILD SYSTEMS 3

https://github.com/takashi-ishio/CommentLister
https://doi.org/10.6084/m9.figshare.13018580

records. Using only the comment content shown in the exam-
ple below, we could not identify why this SATD occurred.
However, using the contextual information surrounding the
comment and the information provided in the hyperlink, we
could identify the reason. After the second pass, 41 instances
are corrected based on the contextual information.

Example: Comment Content

Example: Contextual Information Surrounding the
Comment

Card Sorting. We apply open card sorting to construct a
taxonomy of SATD reasons. Open card sorting helps us to
generate general categories from our low-level codes. The
open card sorting includes two steps. First, the coded
comments are merged into cohesive groups that can be repre-
sented by a similar subcategory. Second, the related subcate-
gories are merged to form categories that can be summarized
by a short title.

3.2 Results

In this section, we present our results for RQ1, consisting of
SATD location and rationale (reason and purpose).

RQ1.1 - SATD Location

Observation 1. Plugin configuration and External dependencies
configuration are the most frequently occurring locations in our
sample. We identified the nine location codes that emerged
from our qualitative analysis. Table 2 provides an overview
of the categories and their definitions, frequencies, and
lines of code (LOC) for SATD locations. From the table, we
observe that Plugin configuration is the most frequently
occurring location for developers to leave SATD comments,
with 49% of SATD comments appearing in that location.
The second most frequently occurring location is the
External dependencies configuration location, accounting for
32% of SATD comments appearing in that location. In addi-
tion, locations such as Project metadata, Build organization,
and Software configuration management are rarely associated
with SATD, i.e., 1% for each category.

The fourth column of Table 2 shows that our location ten-
dencies appear to follow the volume of code in each cate-
gory. This result shows that, as one might expect, categories
that require larger volumes of build configuration code
tend to be more prone to contain SATD.

RQ1.2 - SATD Rationale
Reasons. The top portion of Table 3 defines and quantifies

the reasons that we observe for SATD comments in our
studied sample.

Observation 2. Limitation is the most common reason cate-
gory for developers to leave SATD comments. We identified
16 subcategories that emerged from our classification
for SATD reasons. The 16 subcategories fit into nine cat-
egories. Table 3 shows definitions and frequencies for
various SATD reason categories. As we can see from
the table, 50% of SATD comments are left due to the
Limitation reason.

TABLE 2
Definition and Frequency of SATD Locations and Lines of Code (LOC) of Build Code

Category Definition Frequency LOC

Plugin configuration Build code that specifies which build plugin features should be included or excluded
and how they should be configured for build execution, e.g., <plugins>,
<profiles>.

244 (49%) 94,377 (43%)

External dependencies
configuration

The system under construction or the plugins in use during the build process may
rely on external code in order to function correctly. The Maven build technology also
includes tooling for specifying and resolving these dependencies through a central
repository of artifacts. Maven users may declare their external dependencies in
Maven specifications using tags, e.g., <dependencies>.

159 (32%) 97,797 (44%)

Build variables Maven users may declare their own build variables or override inherited variables
from a parent POM, e.g., <properties>.

57 (11%) 7,689 (3%)

Multi-directory
configuration

Build code that avoids redundancies or duplicate configurations through inheritance.
Maven users may declare their project’s parent in Maven specifications using tags,
e.g., <parent>.

10 (2%) 5,325 (2%)

Resource configuration Build code that specifies where resources are stored and what kinds of resources are
used during the build process, e.g., <resources>.

10 (2%) 1,276 (1%)

Repository configuration The system which is needed to deploy artifacts from the organization may rely on
remote repositories in order to populate the required dependencies to a local
repository, e.g., <repositories>.

9 (2%) 4,076 (2%)

Project metadata Build code that specifies project descriptive information. In Maven, this information
includes the version, artifact, and group identifiers of the project, e.g.,
<artifactId>, <groupId>, <url>.

6 (1%) 8,715 (4%)

Build organization Build code that specifies the build lifecycle and its outputs should be configured, e.g.,
<packaging>.

3 (1%) 414 (0%)

Software configuration
management

Build code that specifies a set of information for release build to check out the tag that
was created for this release. Maven users may declare it in Maven specifications
using tags. e.g., <scm>.

2 (1%) 787 (0%)

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Upon closer inspection, external library limitation is the
main limitation, accounting for 41% of the occurrences of
the Limitation category. Indeed, it appears that working
around the constraints imposed by external libraries is a
complexity of modern development from which build spec-
ifications are not exempt. The following is an example of the
Limitation reason. The comment describes the limitation of
the specific version of the maven-war-plugin plugin.3

The second most frequently occurring category is the Depen-
dency reason (24%). In an example below, the bval-jsr

dependency is missing on jaxb-api. Thus, developers leave
comments as a reminder for why this dependency is needed.4

Least frequently occurring patterns include the Code smell
reason (1%) and the Change propagation reason (1%). Finally,
only 3% of comments are labelled asNo reason, which means
that we could not determine the reasons from them.

In the study ofMensah et al. [34], they identified the possi-
ble causes of SATD introduction. Themost prominent causes
are code smells (23%), complicated and complex tasks (22%),
inadequate code testing (21%), and unexpected code perfor-
mance (17%). Comparatively, those causes account for only
1% of the SATD. We suspect that this is because build code
specifies a set of rules to prepare and transform the source
code into deliverables. Unlike imperative or object-oriented
systems, build specifications are primarily implemented to
inform an expert system so that it may make efficient and
correct decisions. This change in paradigm is likely changing
the characteristics of observable SATD.

We describe the remaining reason categories in detail
using representative examples in our online appendix5 to
help the reader understand this taxonomy.

Purposes. The bottom portion of Table 3 defines and
quantifies the purposes that we observe for SATD com-
ments in our studied sample.

Observation 3. Document for later fix is the most frequently
occurring purpose. Our classification revealed six SATD pur-
poses. Table 3 shows the results of our purpose classification.
We observe that 39% SATD comments are left by developers
with the Document for later fix purpose. The result indicates
that SATD comments are likely to be used as a short-term
memo for developers to recheck in the future. For example,
since Maven resolves dependencies transitively, it is poss-
ible to include unwanted or problematic dependencies. For
the software.amazon.awssdk:s3 dependency which

includes the broken netty-nio-client:software.

amazon.awssdk dependency, developers exclude this
dependency to preserve a clean (i.e., non-broken) build sta-
tus. Developers leave this comment as a note to revisit in the
future.6

Another commonly occurring purpose is the Document
workaround purpose, accounting for 22% of our sample. In the
example below, the io.grpc:grpc-core dependency is
partly unusable. Developers comment out this dependency
and leave the comment to document this temporary fix.7

TABLE 3
Definition and Frequency of SATD Reasons and Purposes

Nine categories merged from subcategories for SATD reasons are shown in bold.

3. https://tinyurl.com/y5jtkxkb
4. https://tinyurl.com/ymvvfdss
5. https://doi.org/10.6084/m9.figshare.13147727

6. https://tinyurl.com/y4wg8n3z
7. https://tinyurl.com/y43rxj9a

XIAO ET AL.: CHARACTERIZING AND MITIGATING SELF-ADMITTED TECHNICAL DEBT IN BUILD SYSTEMS 5

https://tinyurl.com/y5jtkxkb
https://tinyurl.com/ymvvfdss
https://doi.org/10.6084/m9.figshare.13147727
https://tinyurl.com/y4wg8n3z
https://tinyurl.com/y43rxj9a

On the other hand, only 3% and 2% of SATD comments
are identified for the Placeholder for later extension purpose
and the Silence build warnings purpose.

The survey of Maldonado et al. [28] showed that develop-
ers most often use SATD to track future bugs and bad
implementation areas. In our context of build systems, the
high frequency of the Document for later fix purpose agrees
with their observations.

We describe the remaining purpose categories in detail
using representative examples in our online appendix8 to
help the reader understand this taxonomy.

3.3 Relationships

Observation 4. Location categories share a strong relationship
with reason categories. Motivated by representative exam-
ples, we observe that SATD comments in similar locations
can vary in terms of reasons and purposes. Thus, we con-
duct a further study to investigate the relationships
between locations and reasons, and locations and pur-
poses. We visualize these relationships by using two par-
allel sets [21] in parallel categories diagrams. Parallel sets
are variants of parallel coordinates, in which the width of
lines that connect sets corresponds to the frequency of
their co-occurrence. Fig. 2 shows relationships between
locations and reasons, and locations and purposes.

In Fig. 2a, SATD comments in Plugin configuration most fre-
quently occur (66.0%) because of the Limitation reason in
our sample. The example below shows a co-occurrence of
Plugin configuration-Limitation.9 This SATD comment is
located in the <plugin> tag and indicates that the current
plugin suffers from an external library limitation, i.e.,
maven-shade-plugin.

SATD comments located in External dependencies con-
figuration most frequently occur (60.4%) due to the
Dependency reason in our sample. The example below
shows this relationship, where a comment located in the

<dependencies> tag indicates that it should adopt the
proper dependency (i.e., org.apache.calcite.ava-

tica:avatica) due to the inconsistency protobuf

dependency with Hadoop.10

These two observations suggest that location categories tend
to be more prone to SATD causes.

Moreover, for the relationships between locations and
purposes that are shown in Fig. 2b, SATD comments in
the Plugin configuration location are most often left with
the Document for later fix purpose (29.5%). For instance,

Fig. 2. Parallel sets between locations and reasons, and locations and
purposes of SATD in Maven build systems. For example, Plugin configu-
rationmost frequently occur because of the Limitation reason.

8. https://doi.org/10.6084/m9.figshare.13147739
9. https://tinyurl.com/y6fuzkrk 10. https://tinyurl.com/23jbyek4

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

https://doi.org/10.6084/m9.figshare.13147739
https://tinyurl.com/y6fuzkrk
https://tinyurl.com/23jbyek4

the SATD comment below describes an issue to be revis-
ited later.11

Fig. 2b also shows that SATD comments in the External
dependencies configuration location are most often left with
the Document for later fix purpose (42.8%). In a case
below, the comment located in the <dependency> tag
is used to document a pending maven-plugin 3.0.12

Despite these two observations, there is no clear relation-
ship between locations and purposes of SATD com-
ments. The result suggests that the location of SATD
does not affect the purpose of developers leaving SATD
comments or vice versa.

RQ1 Summary. We identified nine SATD locations, nine
reasons, and six purposes in Maven build systems. Loca-
tion categories tend to be more prone to SATD causes. In
the build system maintenance, stakeholders involved in
SATD management should be aware of diverse SATD
characteristics to assist in making effective management
decisions. For example, using these categories, stakehold-
ers can measure and classify these SATD to calculate pri-
ority or estimate damage in the future.

4 SATD COMMENT CLASSIFICATION (RQ2)

In Section 3, our results provide evidence that diverse SATD
locations and rationale (i.e., reasons and purposes) exist
in build files. To facilitate the replication of detection
approaches, and promote the adoption and traceability of
SATD, an automated SATD classifier should be beneficial.

Thus, we further study the feasibility of automatically
classifying SATD comments. To do so, we use the manually
coded SATD comments from Section 3 as a dataset. With

this dataset, we train classifiers based on machine learning
techniques and evaluate their performance. Below, we pres-
ent our approaches to automated classification (Section 4.1)
and model evaluation (Section 4.2), as well as the results to
RQ2 (Section 4.3).

4.1 Approach

We merge infrequent codes (i.e., those whose frequencies
are less than 10% of the sample comments), which do not
provide sufficient signal to train a reliable classifier. For the
reason categories, we merge Recursive call, Document, Build
break, Compiler setting, Code smell, Change propagation, and No
reason into a single “Other” category. For the purpose cate-
gories, we merge Placeholder for later extension and Silence
build warnings into a single “Other” category.

Text Preprocessing. An analysis of coded SATD comments
revealed that bug report links usually appear in comments.
Thus, for all SATD comments, we replace hyperlinks with
abstracturl by using the regular expression similar to
the previous study [27]:

Moreover, to reduce the impact of noisy text in comments,
we remove special characters by using the regular expres-
sion [^A-Za-z0-9]+. Additionally, we apply Spacy13 to
lemmatize words, which accounts for term conjugation.
Although it is common practice, we opt to exclude stop
words removal, since stop words like ‘for’ and ‘until’ convey
critical semantics in the context of SATD comments [27].

Feature Extraction.Weapply theN-gram InverseDocument
Frequency (IDF) approach to extract features from the prepro-
cessed text using the N-gramweighting scheme tool [43] with
its default setting. N-gram IDF [44] is a theoretical extension
of the IDF approach for handling words and phrases of any
length. The approach generates a list of all valid N-gram
terms, and the strength of their association with the targeted
classes excluding Other. We remove any term that appears
only once in each class. In total, 961 and 1,160 N-gram terms
are retrieved for SATD reasons and purposes, respectively.

Classifier Preparation. Previous studies [26], [27], [49]
reported that classifiers trained by combining N-gram IDF
and auto-sklearn machine learning tend to outperform classi-
fiers that are trained with single word features. Heeding their
advice, we train our classifiers using auto-sklearn [12], which
automatically determines effective machine learning pipe-
lines for classification. Auto-sklearn searches a configuration
space of 15 classification algorithms, 14 feature preprocesses,
and four data preprocesses for optimal hyperparameter set-
tings.We configure the approach to optimize for theweighted
F1-score, with a budget of one hour for each round, and a
memory capacity of 32GB.

4.2 Evaluation Setting

To evaluate our classifier, we use common performance
measures. The precision is the fraction of SATD comments
that are correctly classified. The recall is the fraction of truly

11. https://tinyurl.com/4ye7jke8
12. https://tinyurl.com/y49s8kg3 13. https://spacy.io/

XIAO ET AL.: CHARACTERIZING AND MITIGATING SELF-ADMITTED TECHNICAL DEBT IN BUILD SYSTEMS 7

https://tinyurl.com/4ye7jke8
https://tinyurl.com/y49s8kg3
https://spacy.io/

SATD comments that are classified as such. The F1-score is
the harmonic mean of precision and recall.

Comparison. To investigate the impact that the choice of
classification technique has, we apply Naive Bayes (NB),
Support Vector Machine (SVM), and k-Nearest Neighbors
(kNN) classification techniques. These classifiers have been
broadly adopted in prior studies [18], [50]. Similar to prior
work [27], we apply TF-IDF [42] to extract the features for
our baseline classifiers.

Ten-Fold Cross-Validation. To estimate classifier perfor-
mance on unseen data, we apply ten-fold cross-validation,
which divides the data into ten sets and each set is used for
testing while others are used for training. Similar to prior
work [27], we use the Stratified ShuffleSplit cross validator
of scikit-learn [37]. Since some comments can appear multi-
ple times in different sets, we report the mean of the perfor-
mance measures over ten rounds.

4.3 Results

Observation 5. The auto-sklearn classifier achieves the highest
value of F1-score for both reasons and purposes. Table 4 shows
the classifier performance with respect to the reasons for
SATD. The table shows that the average precision is 0.72,
which is greater than the precision of the NB and kNN
classifiers (0.66 and 0.63, respectively). The average recall
and F1-score of the auto-sklearn are also greater than
baseline classifiers by at least four and six percentage
points, respectively. Upon closer inspection, we find that
the classification of Limitation achieves the best perfor-
mance when compared with the other two reason catego-
ries. For instance, the recall and F1-score for Limitation are
0.78 and 0.76, respectively, which are greater than the
next best performance, Dependency, by a margin of at least
nine percentage points.

Table 5 shows the classifier performance with respect to the
purposes of SATD. As we can see from Table 5, the auto-
sklearn classifier outperforms the baseline classifiers. The
average precision, recall, and F1-score are greater than the
other baseline classifiers by at least five points. Closer
inspection of the purpose categories reveals that classifying
the Document workaround purpose has the best performance,
with the F1-score reaching 0.93. Such high performance is

possible as there usually exist keywords that explicitly map
this category, e.g., ‘workaround’ and ‘temporary’. More-
over, for the other purpose categories, we find that the per-
formance is still promising, e.g., achieving F1-scores of 0.82
and 0.71 for Document for later fix and Warning for future
developers purposes.

On the other hand, we observe that SVM outperforms
auto-sklearn in terms of precision. For example, SVM
reaches greater precision value of most reasons, i.e., Depen-
dencywith 0.84 and Otherwith 0.72. Moreover, SVM outper-
forms auto-sklearn in special categories, i.e., Document
workaround with precision of 0.99, Warning for future develop-
ers with precision of 0.85, and Document for later fix with
recall of 0.96.

In Table 6, we list the most frequently occurring N-gram
features. For example, ‘workaround for’ appeared 55 times
for SATD comments with the Document workaround pur-
pose, and ‘be break’ appeared 20 times for SATD comments
about Limitation reason. To better understand our classifiers,
we set out to explore why the auto-sklearn classifier fails to
correctly classify 129 SATD comments. To do so, we manu-
ally review these SATD comments in search of possible
causes for their misclassification. Since we focus on the
main reasons and purposes (i.e., accounting for relatively
high frequencies), we omit the Other categories from this
analysis. There is a total of 95 reasons and 53 purposes
that are misclassified in ten-fold rounds (19 SATD com-
ments are misclassified in both reason and purpose).

In terms of SATD reason categories, we observe that the
classifier tends to mainly misclassify the Dependency reason
as Limitation reason (29 cases).We suspect that this is because
contextual information is often needed to differentiate
between these two categories. Since our classifier only
focuses on the comment content itself, the contextual infor-
mation is missing. For example, the hyperlink was replaced
with “abstrcturl” in the text preprocessing step,whichmakes
the URL and its contents opaque to the classifier. In terms of
SATD purpose categories, we observe that the classifier

TABLE 4
Performance of Classifiers for SATD Reason

Category auto-sklearn NB SVM kNN

Precision

Limitation 0.75 0.70 0.67 0.72
Dependency 0.72 0.65 0.84 0.68
Other 0.66 0.58 0.72 0.41
Avg. 0.72 0.66 0.72 0.63

Recall

Limitation 0.78 0.76 0.89 0.59
Dependency 0.65 0.53 0.41 0.29
Other 0.65 0.59 0.51 0.74
Avg. 0.71 0.66 0.67 0.55

F1-score

Limitation 0.76 0.72 0.76 0.64
Dependency 0.67 0.57 0.53 0.39
Other 0.65 0.57 0.57 0.52
Avg. 0.71 0.65 0.65 0.55

TABLE 5
Performance of Classifiers for SATD Purpose

Category auto-sklearn NB SVM kNN

Precision

Document for later fix 0.75 0.66 0.61 0.64
Document workaround 0.95 0.57 0.99 0.90
Warning for future developers 0.77 0.48 0.85 0.68
Document suboptimal
implementation choice

0.78 0.41 0.74 0.66

Other 0.93 0.85 0.70 0.50
Avg. 0.81 0.58 0.76 0.70

Recall

Document for later fix 0.92 0.52 0.96 0.88
Document workaround 0.90 0.70 0.82 0.83
Warning for future developers 0.69 0.44 0.54 0.45
Document suboptimal
implementation choice

0.48 0.42 0.32 0.25

Other 0.78 0.82 0.38 0.78
Avg. 0.80 0.54 0.72 0.68

F1-score

Document for later fix 0.82 0.57 0.75 0.74
Document workaround 0.93 0.62 0.89 0.86
Warning for future developers 0.71 0.43 0.64 0.52
Document suboptimal
implementation choice

0.58 0.40 0.43 0.35

Other 0.83 0.80 0.49 0.57
Avg. 0.79 0.54 0.70 0.66

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

tends to misclassify Document suboptimal implementation
choice (29 cases) andWarning for future developers (23 cases) as
Document for later fix. We observe that these misclassified
cases often contain specific keywords, such as TODO. While
TODO is often used to indicate areas for future improve-
ments, it also appears within comments that document sub-
optimal implementation choices andwarn future developers
of confusing program behaviour.

RQ2 Summary. The auto-sklearn classifier achieves the
highest value of F1-score for SATD reasons (0.72 preci-
sion, 0.71 recall, 0.71 F1-score) and purposes (0.81 preci-
sion, 0.80 recall, 0.79 F1-score).

5 SATD REMOVAL (RQ3)

In this section, we investigate the willingness of developers
to remove the ‘ready-to-be-addressed’ SATD that contains
resolved bug reports similar to the previous study [26]. To
do so, we mine for links in the comments of the manually
coded data from Section 3. We then systematically assess
whether the SATD is ready to be addressed. This concept is
known as ‘on-hold’ SATD, which is a condition to indicate
that a developer is waiting for a certain event to occur else-
where (e.g., an update to the behaviour of a third-party
library or tool), according to the study of Maipradit et al.
[27]. Below, we first describe our studies of the incidences
of ‘ready-to-be-addressed’ SATD (Section 5.1), and our pro-
posed clean-up pull requests and tracking issue reports
(Section 5.2).

5.1 Incidences of Ready-to-be-Addressed SATD

Identify Ready-to-be-Addressed SATD. We systematically
identify ‘ready-to-be-addressed’ SATD using the following
list of conditions:

Step 1. Extract hyperlinks or issue IDs from the comments.
Using regular expressions, we extract 104 links from 90 SATD
comments. Then we manually code them based on the link
target coding guide of Hata et al. [16]. Table 7 shows the link
target distribution. We observe that bug report is the most fre-
quently occurring (78%) link target in SATD comments.

Step 2. Check link target in SATD comments. We check if
the link target is a bug report with the status of ‘resolved’,
‘closed’, ‘verified’, or ‘completed’, and resolution type is set
to ‘fixed’ similar to the previous study [26]. Furthermore, to
facilitate the creation of our pull requests and issue reports,
we exclude four candidates where: (I) the repository refer-
enced in the SATD comment has been archived; (II) the
repository referenced by the issue report in the SATD com-
ment has been archived; (III) the repository referenced in
the SATD comment is a mirror repository; (IV) the issue
report link in the SATD comment is a ‘cross-reference’ (e.g.,
the issue report is referenced to aid in documenting the
rationale behind an implementation choice).

Observation 6. Of the 90 SATD comments that contain hyper-
links, 16 contain ‘ready-to-be-addressed’ SATD. Among the 16,
Plugin configuration is the most frequently occurring location,
Limitation is the most frequently occurring reason, and Docu-
ment workaround is the most frequently occurring purpose, i.e.,
13, 10, and 12 cases, respectively. Table 8 shows that we ini-
tially identified 27 ‘ready-to-be-addressed’ SATD in our
dataset. However, we observed that 10 of the 27 SATD had
already been removed by developers. Five SATD were
removed because the entire file was deleted. The other five
SATD were addressed directly by developers. Addition-
ally, one SATD had been submitted as an issue report by a
developer, but it has not been closed.

TABLE 7
Frequency of Link Target Types in

90 SATD Comments

Category Frequency

bug report 81 (78%)
404 10 (10%)
tutorial or article 6 (6%)
Stack Overflow 2 (2%)
pull request 2 (2%)
software homepage 1 (1%)
forum thread 1 (1%)
blog post 1 (1%)

sum 104 (100%)

TABLE 6
Frequently Occurring N-Gram Features in Each Category

TABLE 8
Distribution of ‘Ready-to-be-Addressed’ SATD

Status Frequency

Existing 16 (59%)
File deleted 5 (19%)
Fixed by developers 5 (19%)
Developers try to fix 1 (3%)

XIAO ET AL.: CHARACTERIZING AND MITIGATING SELF-ADMITTED TECHNICAL DEBT IN BUILD SYSTEMS 9

5.2 Creation of Pull Requests and Issue Reports

To evaluate the importance of ‘ready-to-be-addressed’
SATD, we created issue reports and pull requests to the
studied projects. When preparing issue reports, we also pro-
vide possible solutions for developers to deal with ‘ready-
to-be-addressed’ SATD. Since some SATD comments can-
not be resolved by directly adding or removing dependen-
cies or removing comments themselves, we submitted issue
reports to inform developers of the existence of such exam-
ples of SATD in their systems. Examples of issue reports
and pull requests are shown in Figs. 3a and 3b.

Observation 7. For ‘ready-to-be-addressed’ SATD, removal rates
have been reached 43% and 56% in pull requests and issue
reports, respectively. In total, we prepared seven issue reports
for nine instances of SATD, since three SATD belong to the
same repository. In addition, we prepared seven pull
requests for the other seven instances of SATD comments.
We found developers actively resolve these pull requests
and issue reportswithin a 20 days time frame.

Three of the four responded pull requests have been
accepted and merged into the main branch. For instance, one
developer responded: “I merged it, and found and fixed two
others of the same type, which would have remained if you had not
brought it to our attention. Thanks!” Only one pull request was
rejected because the developer had to consider the plugin ver-
sion dependency, i.e., “Thanks for the reminder! Upgrading the
plugin in my TODO list for the summer, so I’ll look into it shortly.
The plugin versionmust be updated before removing the config.”

For the prepared issue reports, five ‘ready-to-be-
addressed’ SATD were resolved. For instance, one developer

left the appreciation: “Thanks for making us aware of this fact.”
On the other hand, two issue reports were rejected: one case is
where the developer did not agree that the issue was an
instance of technical debt (as shown in our online appendix14)
and another case is where, due to the system supporting mul-
tiple versions, the SATD could not be removed.

RQ3 Summary. We identified 16 instances of SATD that
are ‘ready-to-be-addressed’. Through our experiment, we
propose pull requests for seven cases, three of which
were merged. Moreover, we produce issue reports for
nine cases, five of which were resolved within 20 days.
These responses suggest that developers are receptive
and reactive to SATD in build systems.

6 DEVELOPER FEEDBACK

To evaluate the discovered SATD reason and purpose catego-
ries, we conduct a developer survey on the perceptions of
SATD in build files. The goal of our survey is to (i) incorporate
developer perceptions on instances of TD, (ii) understand
real-world experiences with similar instances of TD, and (iii)
evaluate the suitability of the proposed reason and purpose
categories. The survey consists of ten SATD cases, which we
ask our respondents to label. Respondents are also given a
table that provides an overview of our discovered labels and
their definitions. The cases in the survey are randomly sam-
pled from our studied data set in a stratified manner, i.e., the
frequency of category occurrence in the data set guides the
likelihood of cases of that category being selected for our sur-
veys. Respondents are allowed to skip any cases or not
answer certain questions.

There are 4,746 developers who have made at least one
contribution to the 291 studied Maven repositories on
GitHub. To ensure that our participants have sufficient exper-
tise, we filter out candidateswith fewer than ten contributions
to our studied Maven repositories. We invited the remaining
1,670 developers to participate in our survey. The survey was
open from July 9 to August 1, 2021. We received responses
from 20 developers. Table 9 presents the overview of the dem-
ographics of our survey participants. Most of the respondents
have more than ten years of Maven editing experience, and
their programming experiences vary from 5 years to 30 years
and above. Below,we present our survey results.

Developer Perspectives on TD Types. Table 10 shows the
outcome of the TD labeling task from our respondents. The
table shows that in each of the ten prepared cases, more
than 50% of developers agree with the instance of a TD. For
instance, in Case 6 below,

Fig. 3. Examples of created issue report and pull request.

14. https://doi.org/10.6084/m9.figshare.15059925

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

https://doi.org/10.6084/m9.figshare.15059925

93% of respondents agree that such a case is an instance of
TD. In the survey questions, we also asked the developers
whether they have experience with similar examples of TD.
The survey results show that for each of the ten cases, at
least 58% of developers have had a personal experience
with a similar example of TD. Moreover, one developer
elaborated on how best to deal with cases of inadequate
licensing information, stating that “Ideally I suppose Maven
should do that automatically by picking it up from other files.”
Indeed, the potential for automating the management and
repair of TD in build systems is great.

Evaluation of Reason and Purpose Categories. Table 10 also
shows the results of our survey-based evaluation of TD reason
and purpose categories. For the reason categories, six cases
thatwere labelled bydevelopers are consistentwith our labels.
Among the remaining four cases, although there are three
cases that were labelled with different categories, the second
most frequent reason that developers selected matched with
our results. Developers only disagree with Case 3 (shown
below), labeling it asCode smell instead ofRecursive call.

In addition, a respondent explained that some debts are
inherited because of decisions made by upstream depen-
dencies: “We faced similar issues with eclipse link. Sometimes
you just document that it sucks and move on. There’s not a ton to
be done when the upstream library is complex, heavily integrated
into your project, still active, and broken.”

For the purpose categories, the survey results show that
most labels from developers are consistent with our labels
from RQ1. As shown in the table, five cases that were
labelled by developers (i.e., the most frequent purposes)
exactly matched with our labels. Although the most fre-
quent purposes are not aligned with our labels in the rest of
the five cases, the second or third most frequently occurring
labels are still consistent.

7 RECOMMENDATIONS

Based on our findings, we make the following recommenda-
tions for practitioners, researchers, and tool builders. First,
we recommend that practitioners:

� Track SATD by using issue trackers, as we find that
developers have tried to add issue report hyperlinks
or issue IDs in tandem with comments. Using only
comments to track or manage SATD is still problem-
atic. Indeed, only 90 out of the 500 SATD comments
contain hyperlinks. Explicitly referencing related
content will improve traceability.

� Check SATD containing resolved bug reports, as we iden-
tified 16 instances of SATD comments that are ready-
to-be-addressed from RQ3. These stale SATD com-
ments could create confusion for anyone inspecting
the code.

Even more insights for practitioners would be discovered
by the following future research:

� Further studies of workarounds for SATD. During the
coding process, we observe that one SATD work-
around can be used across several repositories. This
suggests that the retrieval and curation of work-
arounds may have broad implications beyond the
scope of a specific project, and are thus important
and of value for practitioners.

� Establishing an understanding of SATD in other build
systems. As seen in Tables 2 and 3, we identified nine
locations, nine reasons, and six purposes, which
could improve the overall understanding of SATD in
build systems. Applying the coding guides from
RQ1 to other build systems (e.g., make, CMake, or
Ant) could help to establish a broader theory of
SATD in build systems in general.

� Improving the classification of SATD in build systems. In
RQ2, we propose automatic classifiers to identify
SATD characteristics. Tables 4 and 5 show that our
classifiers are promising. The results demonstrate the
feasibility of automatic classifiers and lay the founda-
tion for developing a SATD classification system.
However, it still has room for performance improve-
ment. We suggest that in future research, researchers
evaluate other approaches to improve the SATD clas-
sifiers. Based on our qualitative analysis of exploring
why our auto-sklearn classifier fails to classify the
SATD comments, we suggest that contextual infor-
mation (e.g., surrounding comment content and issue
description extracted from the issue report hyperlink)
could be included as an input to support the classifi-
cation of reason categories. Moreover, we suggest
that researchers pay attention to the effect of the
“TODO” annotation for automatically classifying
SATD purpose categories, since it is implicated in
several false positive results of the classifier.

The following directions for future work may yield value
for tool builders:

� Tool support for managing SATD in build systems.
Although we recommend that practitioners use issue
report hyperlinks or IDs to track SATD, it could be

TABLE 9
Demographics of Survey Participants

Gender male 18
prefer not to say 2

Programming years

5–9 3
10–14 2
15–19 2
20–24 6
25–29 2
30 and above 5

Maven editing years

less than 3 1
3–5 1
6–9 7
10 and above 10
prefer not to say 1

XIAO ET AL.: CHARACTERIZING AND MITIGATING SELF-ADMITTED TECHNICAL DEBT IN BUILD SYSTEMS 11

practically useful to have tools or systems to help prac-
titioners manage SATD traceability automatically. A
SATD management tool could make the developers
aware of the debt being incurred and would make it
easy to continually avoid the debt as part of their nor-
mal workflow. A possible mock-up was presented by
Maipradit et al. [26, Fig. 7]. Especially for third-party
libraries, an effective awareness mechanism is needed
to allow upstreamdevelopers to continually fix library
related issues. InRQ1,wefind thatExternal library limi-
tation is the most frequently occurring reason subcate-
gory (41%). Moreover, such limitation is also pointed
by one survey response: “This situation sucks, if some of
these libraries just don’t have a (maintained) osgi-ified bun-
dle. This is one of those cases and there’s not much you can
do aside from bundle it yourself which can be error prone
and a maintenance nightmare.”

� Focusing on top SATD locations and reasons would pro-
vide the most benefit to developers. In RQ1, we provide
the most frequently occurring locations and reasons
for SATD in the build systems. We suggest that tool
builders make an extra effort on these top locations
and reasons.

� Tool support for recommending solutions to SATD in
build systems.During the creation of pull requests and
issue reports, we observe that the possible solutions
that we provided for developers to mitigate ‘ready-
to-be-addressed’ SATD are similar and straightfor-
ward (e.g., remove the extraneous comment or code).
This observation suggests that an automated tool for
addressing SATD could be useful. This will not just
help developers to manage such SATD, but also will
improve the quality of the final product.

8 RELATED WORK

In this section, we position our work with respect to the lit-
erature on build systems and technical debt related to this
study.

8.1 Build System

Build systemmaintenance is a hidden cost, which takes a con-
siderable amount of development effort. Kumfert et al. [22]
argued that the need to keep the build system synchronized

with the source code generates an implicit overhead on the
development process, and in their survey, developers claimed
that they spend up to 35.71% of their time on build system
maintenance. McIntosh et al. [32] analyzed ten large, long-live
projects by mining the version histories, and their study
showed that build system maintenance is 27% overhead on
source code development. Adams et al. [1] studied the evolu-
tion of the Linux KBUILD files and how these files co-evolve
with the source code. McIntosh et al. [31] made similar obser-
vations in Java build systems.

Build breakage and how to repair it have been widely
studied. Kerzazi et al. [20] interviewed 28 software engineers
to study why build breakages are introduced in an industrial
setting. Rausch et al. [39] performed an analysis of build fail-
ures, which studies the variety and frequency of build break-
age in the CI environments of 14 open source Java projects.
Islam and Zibran [19] studied the factors that may impact the
build outcome, observing that the number of changed lines
of code, files, and built commits in tasks aremost significantly
associatedwith build outcomes. Zolfagharinia et al. [53] stud-
ied the impact of operation system and runtime environment
on build breakage in the CI environment of the Comprehen-
sive Perl Archive Network (CPAN) ecosystem, suggesting
interpretation of build results is not straightforward.

In addition, researchers have proposed automated
approaches to repair build breakages. For example, Macho
et al. [25] proposed BUILDMEDIC, an approach to automati-
cally repair Maven builds that break due to dependency-
related issues. Hassan and Wang [15] proposed HireBuild,
an approach to automatically repair build scripts with fixing
histories. Hassan [14] also outlined promising preliminary
work towards automatic build repair in CI environment that
involves both source code and build script.

There have also been other predictive approaches pro-
posed to promote awareness and simplify interactions with
build systems. Tufano et al. [46] envisioned a predictivemodel
that would preemptively alert developers about the extent to
which their software changes may impact future building
activities. Hassan and Zhang [13] defined amodel for predict-
ing the certification results of a software build. Bisong et al. [6]
proposed and analyzed models that can predict the build
time of a job. Cao et al. [7] proposed BuildM�et�eo—a tool to
forecast the duration of incremental build jobs by analyzing a
timing-annotated Build DependencyGraph (BDG).

TABLE 10
Results of Developer Feedback

Case Being TD Similar Reason Purpose

experience Ours Survey result Ours Survey result

1 10/20 (50%) 15/20 (75%) Lim. Lim. (8), Dep. (4), None of them (4), B.b (2) War. War. (9), D.w (5), D.lx (4)
2 10/16 (63%) 15/16 (94%) Dep. Lim. (7),Dep. (5), C.s (2) D.w D.w (7), D.sic (5), D.lx (2), War. (2)
3 14/16 (88%) 12/17 (71%) R.c C.s (7), B.b (3), Lim. (3), None of them (2) D.lx D.lx (10), D.w (3), D.sic (2)
4 11/20 (55%) 14/19 (74%) Doc. Doc. (13), None of them (4) Pla. D.lx (10), Pla. (7)
5 12/17 (71%) 13/16 (81%) Lim. Lim. (11), Dep. (2), B.b (2) D.sic D.w (5),D.sic (4), D.lx (4)
6 13/14 (93%) 9/13 (69%) Dep. Dep. (6), Lim. (6) D.w D.lx (8),D.w (6)
7 15/18 (83%) 12/17 (71%) Dep. B.b (6),Dep. (5), C.s (3) D.lx D.lx (11), D.sic (3)
8 8/12 (67%) 7/12 (58%) Lim. Lim. (7), Dep. (2) War. D.sic (5), D.w (4),War. (3)
9 13/15 (87%) 12/14 (86%) Lim. Lim. (9), B.b (3), Dep. (2) D.lx D.lx (9), War. (2), D.w (2)
10 9/12 (75%) 8/12 (67%) Lim. Dep. (5), Lim. (4), C.s (2) D.sic War. (5),D.sic (4), D.w (2)

The relevant abbreviations for reason and purpose categories are as follows: Limitation (Lim.), Dependency (Dep.), Recursive call (R.c), Document (Doc.), Build
break (B.b), Code smell (C.s), Document for later fix (D.lx), Document workaround (D.w), Warning for future developers (War.), Document suboptimal imple-
mentation choice (D.sic), Placeholder for later extension (Pla.). We only consider the labels that have more than one response as valid survey results.

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Although plenty of studies widely investigate the impor-
tance of build system maintenance and propose approaches
to relieve the build issue, there is no study that focuses on
SATD within the scope of build system maintenance. How-
ever, build systems often suffer from massive maintenance
activities during the development process, and the part of
these activities is produced by SATD, since SATD changes
are more difficult to perform and SATD inevitably generate
long-term maintenance problems from a short-term hack.
Thus, in this study, we first characterize and mitigate SATD
in theMaven build system and explore the feasibility of train-
ing automatic classifiers to identify SATD characteristics.

8.2 Technical Debt

Technical Debt is a design or implementation construct that
is expedient in the short term, but sets up a technical context
that can make a future change more costly or impossible [3].
Due to the importance of technical debt to the software
development process and quality, there have been surveys
and mapping studies about technical debt. Sierra et al. [45]
surveyed research work on SATD, analyzing the characteris-
tics of current approaches and techniques for SATD detec-
tion, comprehension, and repayment. Li et al. [23] performed
a mapping study on technical debt and technical manage-
ment. Vassallo et al. [47] showed that 88% of participants
mentioned documenting their suboptimal implementation
choices in the code that they produced.

Prior studies widely analyzed the factors or activities that
affect technical debt. Besker et al. [4] observed that six orga-
nizational factors (experience of developers, software
knowledge of startup founders, employee growth, uncer-
tainty, lack of development process, and the autonomy of
developers regarding TD decisions) were associated with
the benefits and challenges of the intentional accumulation
of technical debt in software. Besker et al. [5] also investi-
gated activities on which wasted time is spent and whether
different TD types impact the wasted time in different ways.

The detection of technical debt is also widely studied. Liu
et al. [24] proposed the SATD detector to automatically
detect SATD comments and highlight, list, and manage
detected comments in an Integrated Development Environ-
ment (IDE). Farias et al. [10] carry out three empirical stud-
ies to curate the knowledge embedded in the SATD
identification vocabulary, which can be used to automati-
cally identify and classify TD items through code comment
analysis. Yan et al. [50] also proposed an automated change-
level TD determination model that can identify TD-intro-
ducing changes. Wattanakriengkrai et al. [49] combine N-
gram IDF and auto-sklearn machine learning approaches to
train classifiers to identify requirement and design debt.
Maldonado et al. [29] used NLP maximum entropy classi-
fiers [30] to automatically identify design and requirement
SATD in source code comments. Moreover, Ren et al. [40]
used Convolution Neural Network-based approaches with
baseline text-mining approaches [18] to identify SATD in a
cross-project prediction setting. Maipradit et al. [26], [27]
identified “On-Hold” SATD for automated management.

Inspired by these past studies of SATD, in this paper, we
conduct the first study on self-admitted technical debt in
build systems. Similar to prior work, we first set out to char-
acterize SATD in build systems in terms of locations,

reasons, and purposes. We provide three coding guides for
SATD in build systems, and automated SATD classifiers are
provided in Section 4. Furthermore, in this work, we investi-
gate the willingness of developers to remove the ‘ready-to-
be-addressed’ SATD that refers to resolved issue reports.

9 THREATS TO VALIDITY

Below, we discuss the threats to the validity of our study:
Construct Validity.Construct validity is concernedwith the

degree to which our measurements capture what we aim to
study.We use comment patterns to identify SATD comments
in build files. Since SATD comment patterns are not enforced,
we will miss SATD comments that do not conform to these
comment patterns. To mitigate this risk, we expand upon a
popular comment patterns list [38] with features recom-
mended by Huang et al. [18]. Since we did not submit issues
and pull requests for non-SATD changes to build systems,
we do not have a baseline towhichwe can compare the prior-
itization of SATD issues and pull requests. Nevertheless, the
proclivity of projects to accept SATD-related build changes
(43% of PRs were accepted) and issue reports (56%were con-
firmed) is still a positive indication that these contributions
are valuable to some degree. Future work is needed to gain a
clearer impression of the relative importance.

Content Validity. Content validity is concerned with the
degree towhich ameasure represents all facets of a given con-
struct. In our study, we did not manually classify the whole
dataset of SATD comments in build files, which will bring the
risk of undiscovered SATDcharacteristic categories. Nonethe-
less, we strive for theoretical saturation [11] to achieve analyti-
cal generalization. Theoretical saturation is widely adopted in
the SE domain [17], [41], [52]. To ensure that no new codes
have been discovered, we performed four iterations and
achieved saturation after coding 266 SATD comments.

Internal Validity. Internal validity is the approximate truth
about inferences regarding cause-effect or causal relation-
ships. We rely on manually coded data, which may be mis-
coded due to the subjective nature of understanding the
coding schema. To mitigate this threat, we apply three best
practices for open coding: 1) we conduct four rounds of inde-
pendent coding and calculate the Cohen’s Kappa to ensure
that our agreements at least are ‘Substantial’; 2) we pursue
saturation with concrete criteria, i.e., 50 consecutively coded
comments for which no new categories were discovered; 3)
we perform two passes that revisited miscoded SATD com-
ments based on additional contextual information.

External Validity. External validity is concerned with our
ability to generalize based on our results. We only conduct
an empirical study of 291 Maven projects. As such, our
results may not generalize to all Maven projects or other
build technologies. On the other hand, our sample of projects
is diverse, including projects of varying size and domain.
Nonetheless, replication studies may help to improve the
strength of generalizations that can be drawn.

10 CONCLUSION

Addressing self-admitted technical debt (SATD) is an
important step in the development process. Recently, many
studies have focused on SATD in source code, but little is

XIAO ET AL.: CHARACTERIZING AND MITIGATING SELF-ADMITTED TECHNICAL DEBT IN BUILD SYSTEMS 13

known about SATD in the build systems. Thus, in this
paper, we characterize and propose mitigation strategies for
the SATD in build systems. To do that, we (i) manually
classified 500 SATD comments according to their locations,
reasons, and purposes; and (ii) trained SATD classifiers
using the coded SATD comments; and (iii) investigated
the willingness of developers to remove the ‘ready-to-be-
addressed’ SATD that references resolved bug reports.

We observe that (i) SATD comments in Maven build sys-
tems most often occur in the plugin configuration location; the
most frequently occurring reasons behind SATD is to docu-
ment limitations in tools and libraries, as well as issues to be
fixed later; and (ii) our auto-sklearn classifier achieves better
performance than baseline classifiers, achieving an F1-score of
0.72–0.79; and (iii) the removal rates of ‘ready-to-be-addressed’
SATD in pull requests and issue reports reached 43% and 56%,
respectively. We foresee many promising avenues for future
work, such as improvements to the classifiers, expanding our
coded corpus of SATD comments to other build systems, and
automatic approaches to address SATD in build systems.

ACKNOWLEDGMENTS

We would like to thank Rungroj Maipradit for providing
technical assistance in training auto-sklearn classifier.

REFERENCES

[1] B. Adams, K. D. Schutter, H. Tromp, andW.Meuter, “The evolution
of the Linux build system,” Electron. Commun. Eur. Assoc. Softw. Sci.
Technol., vol. 8, 2007. [Online]. Available: https://journal.ub.tu-
berlin.de/eceasst/article/view/115

[2] N. S. R. Alves, L. F. Ribeiro, V. Caires, T. S. Mendes, and
R. O. Sp�ınola, “Towards an ontology of terms on technical
debt,” in Proc. Int. Workshop Manag. Tech. Debt, 2014, pp. 1–7.

[3] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing
technical debt in software engineering (Dagstuhl seminar 16162),”
Dagstuhl Rep., vol. 6, no. 4, pp. 110–138, 2016.

[4] T. Besker, A. Martini, R. Edirisooriya Lokuge , K. Blincoe, and
J. Bosch, “Embracing technical debt, from a startup company
perspective,” in Proc. Int. Conf. Softw. Maintenance Evol., 2018,
pp. 415–425.

[5] T. Besker, A. Martini, and J. Bosch, “Software developer produc-
tivity loss due to technical debt—A replication and extension
study examining developers’ development work,” J. Syst. Softw.,
vol. 156, pp. 41–61, 2019.

[6] E. Bisong, E. Tran, and O. Baysal, “Built to last or built too fast?
Evaluating prediction models for build times,” in Proc. Int. Conf.
Mining Softw. Repositories, 2017, pp. 487–490.

[7] Q. Cao, R. Wen, and S. McIntosh , “Forecasting the duration of
incremental build jobs,” in Proc. Int. Conf. Softw. Maintenance Evol.,
2017, pp. 524–528.

[8] K. Charmaz, Constructing Grounded Theory. Newbury Park, CA,
USA: SAGE, 2014.

[9] W. Cunningham, “The WyCash portfolio management system,”
ACM SIGPLAN OOPSMessenger, vol. 4, no. 2, pp. 29–30, 1993.

[10] M. A. de Freitas Farias, M. G. de Mendonça Neto, M. Kalinowski,
and R. O. Sp�ınola, “Identifying self-admitted technical debt
through code comment analysis with a contextualized vocab-
ulary,” Inf. Softw. Technol., vol. 121, 2020, At. no. 106270.

[11] K. M. Eisenhardt, “Building theories from case study research,”
Acad. Manage. Rev., vol. 14, pp. 532–550, 1989.

[12] M. Feurer, A. Klein, K. Eggensperger, J. T. Springenberg, M. Blum,
and F. Hutter, “Efficient and robust automated machine learning,”
inProc. Int. Conf. Neural Inf. Process. Syst., 2015, pp. 2755–2763.

[13] A. E. Hassan and K. Zhang, “Using decision trees to predict the
certification result of a build,” in Proc. Int. Conf. Automated Softw.
Eng., 2006, pp. 189–198.

[14] F. Hassan, “Tackling build failures in continuous integration,” in
Proc. Int. Conf. Automated Softw. Eng., 2019, pp. 1242–1245.

[15] F. Hassan and X. Wang, “HireBuild: An automatic approach to
history-driven repair of build scripts,” in Proc. Int. Conf. Softw.
Eng., 2018, pp. 1078–1089.

[16] H. Hata, C. Treude, R. G. Kula, and T. Ishio, “9.6 million links in
source code comments: Purpose, evolution, and decay,” in Proc.
Int. Conf. Softw. Eng., 2019, pp. 1211–1221.

[17] T. Hirao, S. McIntosh, A. Ihara, and K. Matsumoto, “The review
linkage graph for code review analytics: A recovery approach and
empirical study,” in Proc. Joint Eur. Softw. Eng. Conf. Symp. Found.
Softw. Eng., 2019, pp. 578–589.

[18] Q. Huang, E. Shihab, X. Xia, D. Lo, and S. Li, “Identifying self-
admitted technical debt in open source projects using text min-
ing,” Empir. Softw. Eng., vol. 23, pp. 418–451, 2018.

[19] M. R. Islam and M. F. Zibran, “Insights into continuous integra-
tion build failures,” in Proc. Int. Conf. Mining Softw. Repositories,
2017, pp. 467–470.

[20] N. Kerzazi, F. Khomh, and B. Adams, “Why do automated builds
break? An empirical study,” in Proc. Int. Conf. Softw. Maintenance
Evol., 2014, pp. 41–50.

[21] R. Kosara, F. Bendix, and H. Hauser, “Parallel sets: Interactive
exploration and visual analysis of categorical data,” IEEE
Trans. Vis. Comput. Graphics, vol. 12, no. 4, pp. 558–568,
Jul./Aug. 2006.

[22] G. Kumfert and T. Epperly, “Software in the DOE: The hidden
overhead of “the build”,” Lawrence Livermore Nat. Lab., Liver-
more, CA, USA, Tech. Rep. UCRL-ID-147343, 2002.

[23] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on
technical debt and its management,” J. Syst. Softw., vol. 101,
pp. 193–220, 2015.

[24] Z. Liu, Q. Huang, X. Xia, E. Shihab, D. Lo, and S. Li, “SATD detec-
tor: A text-mining-based self-admitted technical debt detection
tool,” in Proc. Int. Conf. Softw. Eng., 2018, pp. 9–12.

[25] C. Macho, S. McIntosh, and M. Pinzger, “Automatically repairing
dependency-related build breakage,” in Proc. Int. Conf. Softw.
Anal. Evol. Reeng., 2018, pp. 106–117.

[26] R. Maipradit et al., “Automated identification of on-hold self-
admitted technical debt,” in Proc. Int. Work. Conf. Source Code
Anal. Manipulation, 2020, pp. 54–64.

[27] R. Maipradit, C. Treude, H. Hata, and K. Matsumoto, “Wait for it:
Identifying “On-Hold” self-admitted technical debt,” Empir.
Softw. Eng., vol. 25, pp. 3770–3798, 2020.

[28] E. D. S. Maldonado, R. Abdalkareem, E. Shihab, and A. Serebrenik,
“An empirical study on the removal of self-admitted technical
debt,” in Proc. Int. Conf. Softw.Maintenance Evol., 2017, pp. 238–248.

[29] E. da Silva Maldonado, E. Shihab, and N. Tsantalis, “Using natural
language processing to automatically detect self-admitted technical
debt,” IEEE Trans. Softw. Eng., vol. 43, no. 11, pp. 1044–1062,
Nov. 2017.

[30] C. Manning and D. Klein, “Optimization, maxent models, and
conditional estimation without magic,” in Proc. Conf. North Amer.
Chapter Assoc. Computat. Linguistics Hum. Lang. Technol., Tuts.,
2003, Art. no. 8.

[31] S. Mcintosh, B. Adams, and A. E. Hassan, “The evolution of java
build systems,” Empir. Softw. Eng., vol. 17, no. 4/5, pp. 578–608,
2012.

[32] S. McIntosh, B. Adams, T. H. Nguyen, Y. Kamei, and A. E. Has-
san, “An empirical study of build maintenance effort,” in Proc.
Int. Conf. Softw. Eng., 2011, pp. 141–150.

[33] S.McIntosh,M.Nagappan, B. Adams, A.Mockus, andA. E.Hassan,
“A large-scale empirical study of the relationship between build
technology and build maintenance,” Empir. Softw. Eng., vol. 20,
no. 6, pp. 1587–1633, 2015.

[34] S. Mensah, J. Keung, J. Svajlenko, K. E. Bennin, and Q. Mi, “On the
value of a prioritization scheme for resolving self-admitted techni-
cal debt,” J. Syst. Softw., vol. 135, no. C, pp. 37–54, 2018.

[35] J. D. Morgenthaler, M. Gridnev, R. Sauciuc, and S. Bhansali,
“Searching for build debt: Experiences managing technical
debt at Google,” in Proc. Int. Workshop Manag. Tech. Debt, 2012,
pp. 1–6.

[36] P. Morville and L. Rosenfeld, Information Architecture for the World
Wide Web: Designing Large-Scale Web Sites. Newton, MA, USA:
O’Reilly Media, 2006.

[37] F. Pedregosa et al., “Scikit-learn: Machine learning in python,” J.
Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011.

[38] A. Potdar and E. Shihab, “An exploratory study on self-admitted
technical debt,” in Proc. Int. Conf. Softw. Maintenance Evol., 2014,
pp. 91–100.

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

https://journal.ub.tu-berlin.de/eceasst/article/view/115
https://journal.ub.tu-berlin.de/eceasst/article/view/115

[39] T. Rausch, W. Hummer, P. Leitner, and S. Schulte, “An empirical
analysis of build failures in the continuous integration workflows
of Java-based open-source software,” in Proc. Int. Conf. Mining
Softw. Repositories, 2017, pp. 345–355.

[40] X. Ren, Z. Xing, X. Xia, D. Lo, X. Wang, and J. Grundy, “Neural net-
work-based detection of self-admitted technical debt: From perfor-
mance to explainability,” Trans. Softw. Eng. Methodol., vol. 28, no. 3,
pp. 1–45, 2019.

[41] P. C. Rigby and M.-A. Storey, “Understanding broadcast based
peer review on open source software projects,” in Proc. 33rd Int.
Conf. Softw. Eng., 2011, pp. 541–550.

[42] G. Salton andC. Buckley, “Term-weighting approaches in automatic
text retrieval,” Inf. Process.Manage., vol. 24, no. 5, pp. 513–523, 1988.

[43] M. Shirakawa, N-gram weighting scheme, 2017. [Online]. Available:
https://github.com/iwnsew/ngweight

[44] M. Shirakawa, T. Hara, and S. Nishio, “IDF for word N-grams,”
ACM Trans. Inf. Syst., vol. 36, no. 1, pp. 1–38, 2017.

[45] G. Sierra, E. Shihab, and Y. Kamei, “A survey of self-admitted
technical debt,” J. Syst. Softw., vol. 152, pp. 70–82, 2019.

[46] M. Tufano, H. Sajnani, and K. Herzig, “Towards predicting the
impact of software changes on building activities,” in Proc. Int.
Conf. Softw. Eng., New Ideas Emerg. Results, 2019, pp. 49–52.

[47] C. Vassallo et al., “Continuous delivery practices in a large finan-
cial organization,” in Proc. Int. Conf. Softw. Maintenance Evol., 2016,
pp. 519–528.

[48] A. Viera and J. Garrett, “Understanding interobserver agreement:
The kappa statistic,” Family Med., vol. 37, no. 5, pp. 360–363, 2005.

[49] S. Wattanakriengkrai, R. Maipradit, H. Hata, M. Choetkiertikul, T.
Sunetnanta, and K. Matsumoto, “Identifying design and require-
ment self-admitted technical debt using N-gram IDF,” in Proc. Int.
Workshop Empir. Softw. Eng. Pract., 2018, pp. 7–12.

[50] M. Yan, X. Xia, E. Shihab, D. Lo, J. Yin, and X. Yang, “Automating
change-level self-admitted technical debt determination,” IEEE
Trans. Softw. Eng., vol. 45, no. 12, pp. 1211–1229, Dec. 2019.

[51] F. Zampetti, G. Fucci, A. Serebrenik, andM.Di Penta, “Self-admitted
technical debt practices: A comparison between industry and open-
source,” Empir. Softw. Eng., Springer, vol. 26, no. 6, pp. 1–32, 2021.

[52] F. E. Zanaty, T. Hirao, S. McIntosh, A. Ihara, and K. Matsumoto,
“An empirical study of design discussions in code review,” in
Proc. Int. Symp. Empir. Softw. Eng. Meas., 2018, pp. 1–10.

[53] M. Zolfagharinia, B. Adams, and Y.-G. Gu�eh�eneuc, “Do not trust
build results at face value: An empirical study of 30 million
CPAN builds,” in Proc. Int. Conf. Mining Softw. Repositories, 2017,
pp. 312–322.

Tao Xiao is currently working toward the master’s
degree in the Department of Information Science,
Nara Institute of Science and Technology, Ikoma,
Japan. His main research interests include empir-
ical software engineering, mining software reposi-
tories, natural language processing. For more
information, please visit https://tao-xiao.github.io/
.

Dong Wang is currently working toward the doc-
tor degree at the Nara Institute of Science and
Technology, Ikoma, Japan. His research inter-
ests include code review and mining software
repositories. For more information, please visit
https://dong-w.github.io/.

Shane McIntosh received the PhD degree from
Queen’s University, Kingston, Canada, for which
he was awarded the Governor General’s Aca-
demic Gold Medal. He is an associate professor
with the University of Waterloo. Previously, he
was an assistant professor with McGill University,
where he held the Canada research chair in soft-
ware release engineering. In his research, he
uses empirical methods to study software build
systems, release engineering, and software qual-
ity. For more information, please visit http://
shanemcintosh.org/.

Hideaki Hata received the PhD degree in informa-
tion science from Osaka University, Suita, Japan.
He is an associate professor with Shinshu Univer-
sity. His research interests include software eco-
systems, human capital in software engineering,
and software economics. More about him and his
work is available online at https://hideakihata.
github.io/.

Raula Gaikovina Kula received the PhD degree
from the Nara Institute of Science and Technol-
ogy, Ikoma, Japan, in 2013. He is an assistant
professor with the Nara Institute of Science and
Technology. His interests include software librar-
ies, software ecosystems, code reviews, and
mining software repositories.

Takashi Ishio (Member, IEEE) received the PhD
degree in information science and technology from
Osaka University, Suita, Japan, in 2006. He was a
JSPS research fellow from 2006–2007. He was an
assistant professor with Osaka University from
2007–2017. He is now an associate professor of
the Nara Institute of Science and Technology. His
research interests include program analysis, pro-
gram comprehension, and software reuse. He is a
member of the ACM, IPSJ, and JSSST.

Kenichi Matsumoto (Senior Member, IEEE)
received the BE, ME, and PhD degrees in engi-
neering from Osaka University, Suita, Japan, in
1985, 1987, and 1990, respectively. He is currently
a professor with the Graduate School of Informa-
tion Science, Nara Institute Science and Technol-
ogy, Japan. His research interests include software
measurement and software process. He is a mem-
ber of the IPSJ andSPM.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

XIAO ET AL.: CHARACTERIZING AND MITIGATING SELF-ADMITTED TECHNICAL DEBT IN BUILD SYSTEMS 15

https://github.com/iwnsew/ngweight
https://tao-xiao.github.io/
https://dong-w.github.io/
http://shanemcintosh.org/
http://shanemcintosh.org/
https://hideakihata.github.io/
https://hideakihata.github.io/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

